SentimentT2 / README.md
LogischeIP's picture
End of training
34de3f5 verified
|
raw
history blame
2.37 kB
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: SentimentT2
    results: []

SentimentT2

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5309
  • Accuracy: 0.875
  • F1: 0.5098
  • Auc Roc: 0.9113
  • Log Loss: 0.5309

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 40
  • eval_batch_size: 10
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Auc Roc Log Loss
No log 1.0 13 0.4223 0.84 0.0 0.8263 0.4223
No log 2.0 26 0.3733 0.84 0.0 0.8826 0.3733
No log 3.0 39 0.3542 0.85 0.25 0.9012 0.3542
No log 4.0 52 0.2945 0.88 0.625 0.8955 0.2945
No log 5.0 65 0.3566 0.875 0.5283 0.9111 0.3566
No log 6.0 78 0.4393 0.865 0.4906 0.9049 0.4393
No log 7.0 91 0.4951 0.865 0.4706 0.9085 0.4951
No log 8.0 104 0.4460 0.885 0.6102 0.9057 0.4460
No log 9.0 117 0.5089 0.87 0.5000 0.9094 0.5089
0.1739 10.0 130 0.5309 0.875 0.5098 0.9113 0.5309

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0