metadata
language:
- ta
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- parambharat/tamil_asr_corpus
metrics:
- wer
model-index:
- name: Whisper medium english - Logii33-Tamil
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: ' asr corpus'
type: parambharat/tamil_asr_corpus
config: default
split: test
args: default
metrics:
- name: Wer
type: wer
value: 16.834654741982387
Whisper medium english - Logii33-Tamil
This model is a fine-tuned version of openai/whisper-medium on the asr corpus dataset. It achieves the following results on the evaluation set:
- Loss: 0.2995
- Wer Ortho: 54.6978
- Wer: 16.8347
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 500
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
---|---|---|---|---|---|
0.236 | 0.0088 | 500 | 0.2995 | 54.6978 | 16.8347 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1