|
--- |
|
tags: |
|
- text-classification |
|
base_model: cross-encoder/nli-roberta-base |
|
widget: |
|
- text: I love AutoTrain |
|
license: mit |
|
language: |
|
- en |
|
metrics: |
|
- accuracy |
|
pipeline_tag: zero-shot-classification |
|
library_name: transformers |
|
--- |
|
|
|
# LogicSpine/address-base-text-classifier |
|
|
|
## Model Description |
|
`LogicSpine/address-base-text-classifier` is a fine-tuned version of the `cross-encoder/nli-roberta-base` model, specifically designed for address classification tasks using zero-shot learning. It allows you to classify text related to addresses and locations without the need for direct training on every possible label. |
|
|
|
## Model Usage |
|
|
|
### Installation |
|
|
|
To use this model, you need to install the `transformers` library: |
|
|
|
```bash |
|
pip install transformers torch |
|
``` |
|
|
|
### Loading the Model |
|
|
|
You can easily load and use this model for zero-shot classification using Hugging Face's pipeline API. |
|
|
|
``` |
|
from transformers import pipeline |
|
|
|
# Load the zero-shot classification pipeline with the custom model |
|
classifier = pipeline("zero-shot-classification", |
|
model="LogicSpine/address-base-text-classifier") |
|
|
|
# Define your input text and candidate labels |
|
text = "Delhi, India" |
|
candidate_labels = ["Country", "Department", "Laboratory", "College", "District", "Academy"] |
|
|
|
# Perform classification |
|
result = classifier(text, candidate_labels) |
|
|
|
# Print the classification result |
|
print(result) |
|
``` |
|
|
|
## Example Output |
|
|
|
``` |
|
{'labels': ['Country', |
|
'District', |
|
'Academy', |
|
'College', |
|
'Department', |
|
'Laboratory'], |
|
'scores': [0.19237062335014343, |
|
0.1802321970462799, |
|
0.16583585739135742, |
|
0.16354037821292877, |
|
0.1526614874601364, |
|
0.14535939693450928], |
|
'sequence': 'Delhi, India'} |
|
``` |
|
|
|
## Validation Metrics |
|
|
|
**loss:** `0.28241145610809326` |
|
**f1_macro:** `0.8093855588593053` |
|
**f1_micro:** `0.9515418502202643` |
|
**f1_weighted:** `0.949198754683482` |
|
**precision_macro:** `0.8090277777777778` |
|
**precision_micro:** `0.9515418502202643` |
|
**precision_weighted:** `0.9473201174743024` |
|
**recall_macro:** `0.8100845864661653` |
|
**recall_micro:** `0.9515418502202643` |
|
**recall_weighted:** `0.9515418502202643` |
|
**accuracy:** `0.9515418502202643` |