|
--- |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-small-finetuned-amazon-en-es |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-finetuned-amazon-en-es |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.5259 |
|
- Rouge1: 36.6783 |
|
- Rouge2: 8.5304 |
|
- Rougel: 26.4419 |
|
- Rougelsum: 26.6455 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| |
|
| 3.833 | 1.0 | 250 | 2.6792 | 31.8471 | 7.6517 | 22.5413 | 22.6222 | |
|
| 3.5861 | 2.0 | 500 | 2.6408 | 36.8204 | 8.641 | 26.7687 | 26.9114 | |
|
| 3.411 | 3.0 | 750 | 2.6037 | 36.2502 | 7.9975 | 26.3962 | 26.502 | |
|
| 3.29 | 4.0 | 1000 | 2.5673 | 36.7784 | 8.4415 | 26.7726 | 26.9248 | |
|
| 3.2199 | 5.0 | 1250 | 2.5568 | 36.8812 | 8.7419 | 26.7704 | 26.8682 | |
|
| 3.1628 | 6.0 | 1500 | 2.5280 | 37.1871 | 8.8604 | 26.9372 | 27.0992 | |
|
| 3.1292 | 7.0 | 1750 | 2.5265 | 36.6801 | 8.5876 | 26.4392 | 26.5908 | |
|
| 3.1129 | 8.0 | 2000 | 2.5259 | 36.6783 | 8.5304 | 26.4419 | 26.6455 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |
|
|