bert-harmful-ro / README.md
haonan-li's picture
update model card README.md
7cc3a52
|
raw
history blame
1.69 kB
---
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: bert-harmful-ro
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-harmful-ro
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0200
- Accuracy: 0.994
- Precision: 0.997
- Recall: 0.921
- F1: 0.956
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:-----:|
| No log | 1.0 | 89 | 0.1010 | 0.972 | 0.986 | 0.632 | 0.701 |
| No log | 2.0 | 178 | 0.0376 | 0.99 | 0.995 | 0.868 | 0.922 |
| No log | 3.0 | 267 | 0.0200 | 0.994 | 0.997 | 0.921 | 0.956 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.0
- Tokenizers 0.13.3