|
from __future__ import print_function, unicode_literals, absolute_import, division |
|
|
|
import numpy as np |
|
import warnings |
|
import os |
|
import datetime |
|
from tqdm import tqdm |
|
from collections import defaultdict |
|
from zipfile import ZipFile, ZIP_DEFLATED |
|
from scipy.ndimage.morphology import distance_transform_edt, binary_fill_holes |
|
from scipy.ndimage.measurements import find_objects |
|
from scipy.optimize import minimize_scalar |
|
from skimage.measure import regionprops |
|
from csbdeep.utils import _raise |
|
from csbdeep.utils.six import Path |
|
from collections.abc import Iterable |
|
|
|
from .matching import matching_dataset, _check_label_array |
|
|
|
|
|
try: |
|
from edt import edt |
|
_edt_available = True |
|
try: _edt_parallel_max = len(os.sched_getaffinity(0)) |
|
except: _edt_parallel_max = 128 |
|
_edt_parallel_default = 4 |
|
_edt_parallel = os.environ.get('STARDIST_EDT_NUM_THREADS', _edt_parallel_default) |
|
try: |
|
_edt_parallel = min(_edt_parallel_max, int(_edt_parallel)) |
|
except ValueError as e: |
|
warnings.warn(f"Invalid value ({_edt_parallel}) for STARDIST_EDT_NUM_THREADS. Using default value ({_edt_parallel_default}) instead.") |
|
_edt_parallel = _edt_parallel_default |
|
del _edt_parallel_default, _edt_parallel_max |
|
except ImportError: |
|
_edt_available = False |
|
|
|
pass |
|
|
|
|
|
def gputools_available(): |
|
try: |
|
import gputools |
|
except: |
|
return False |
|
return True |
|
|
|
|
|
def path_absolute(path_relative): |
|
""" Get absolute path to resource""" |
|
base_path = os.path.abspath(os.path.dirname(__file__)) |
|
return os.path.join(base_path, path_relative) |
|
|
|
|
|
def _is_power_of_2(i): |
|
assert i > 0 |
|
e = np.log2(i) |
|
return e == int(e) |
|
|
|
|
|
def _normalize_grid(grid,n): |
|
try: |
|
grid = tuple(grid) |
|
(len(grid) == n and |
|
all(map(np.isscalar,grid)) and |
|
all(map(_is_power_of_2,grid))) or _raise(TypeError()) |
|
return tuple(int(g) for g in grid) |
|
except (TypeError, AssertionError): |
|
raise ValueError("grid = {grid} must be a list/tuple of length {n} with values that are power of 2".format(grid=grid, n=n)) |
|
|
|
|
|
def edt_prob(lbl_img, anisotropy=None): |
|
if _edt_available: |
|
return _edt_prob_edt(lbl_img, anisotropy=anisotropy) |
|
else: |
|
|
|
return _edt_prob_scipy(lbl_img, anisotropy=anisotropy) |
|
|
|
def _edt_prob_edt(lbl_img, anisotropy=None): |
|
"""Perform EDT on each labeled object and normalize. |
|
Internally uses https://github.com/seung-lab/euclidean-distance-transform-3d |
|
that can handle multiple labels at once |
|
""" |
|
lbl_img = np.ascontiguousarray(lbl_img) |
|
constant_img = lbl_img.min() == lbl_img.max() and lbl_img.flat[0] > 0 |
|
if constant_img: |
|
warnings.warn("EDT of constant label image is ill-defined. (Assuming background around it.)") |
|
|
|
prob = edt(lbl_img, anisotropy=anisotropy, black_border=constant_img, parallel=_edt_parallel) |
|
objects = find_objects(lbl_img) |
|
for i,sl in enumerate(objects,1): |
|
|
|
if sl is None: continue |
|
_mask = lbl_img[sl]==i |
|
|
|
prob[sl][_mask] /= np.max(prob[sl][_mask]+1e-10) |
|
return prob |
|
|
|
def _edt_prob_scipy(lbl_img, anisotropy=None): |
|
"""Perform EDT on each labeled object and normalize.""" |
|
def grow(sl,interior): |
|
return tuple(slice(s.start-int(w[0]),s.stop+int(w[1])) for s,w in zip(sl,interior)) |
|
def shrink(interior): |
|
return tuple(slice(int(w[0]),(-1 if w[1] else None)) for w in interior) |
|
constant_img = lbl_img.min() == lbl_img.max() and lbl_img.flat[0] > 0 |
|
if constant_img: |
|
lbl_img = np.pad(lbl_img, ((1,1),)*lbl_img.ndim, mode='constant') |
|
warnings.warn("EDT of constant label image is ill-defined. (Assuming background around it.)") |
|
objects = find_objects(lbl_img) |
|
prob = np.zeros(lbl_img.shape,np.float32) |
|
for i,sl in enumerate(objects,1): |
|
|
|
if sl is None: continue |
|
interior = [(s.start>0,s.stop<sz) for s,sz in zip(sl,lbl_img.shape)] |
|
|
|
|
|
|
|
|
|
shrink_slice = shrink(interior) |
|
grown_mask = lbl_img[grow(sl,interior)]==i |
|
mask = grown_mask[shrink_slice] |
|
edt = distance_transform_edt(grown_mask, sampling=anisotropy)[shrink_slice][mask] |
|
prob[sl][mask] = edt/(np.max(edt)+1e-10) |
|
if constant_img: |
|
prob = prob[(slice(1,-1),)*lbl_img.ndim].copy() |
|
return prob |
|
|
|
|
|
def _fill_label_holes(lbl_img, **kwargs): |
|
lbl_img_filled = np.zeros_like(lbl_img) |
|
for l in (set(np.unique(lbl_img)) - set([0])): |
|
mask = lbl_img==l |
|
mask_filled = binary_fill_holes(mask,**kwargs) |
|
lbl_img_filled[mask_filled] = l |
|
return lbl_img_filled |
|
|
|
|
|
def fill_label_holes(lbl_img, **kwargs): |
|
"""Fill small holes in label image.""" |
|
|
|
def grow(sl,interior): |
|
return tuple(slice(s.start-int(w[0]),s.stop+int(w[1])) for s,w in zip(sl,interior)) |
|
def shrink(interior): |
|
return tuple(slice(int(w[0]),(-1 if w[1] else None)) for w in interior) |
|
objects = find_objects(lbl_img) |
|
lbl_img_filled = np.zeros_like(lbl_img) |
|
for i,sl in enumerate(objects,1): |
|
if sl is None: continue |
|
interior = [(s.start>0,s.stop<sz) for s,sz in zip(sl,lbl_img.shape)] |
|
shrink_slice = shrink(interior) |
|
grown_mask = lbl_img[grow(sl,interior)]==i |
|
mask_filled = binary_fill_holes(grown_mask,**kwargs)[shrink_slice] |
|
lbl_img_filled[sl][mask_filled] = i |
|
return lbl_img_filled |
|
|
|
|
|
def sample_points(n_samples, mask, prob=None, b=2): |
|
"""sample points to draw some of the associated polygons""" |
|
if b is not None and b > 0: |
|
|
|
mask_b = np.zeros_like(mask) |
|
mask_b[b:-b,b:-b] = True |
|
else: |
|
mask_b = True |
|
|
|
points = np.nonzero(mask & mask_b) |
|
|
|
if prob is not None: |
|
|
|
w = prob[points[0],points[1]].astype(np.float64) |
|
w /= np.sum(w) |
|
ind = np.random.choice(len(points[0]), n_samples, replace=True, p=w) |
|
else: |
|
ind = np.random.choice(len(points[0]), n_samples, replace=True) |
|
|
|
points = points[0][ind], points[1][ind] |
|
points = np.stack(points,axis=-1) |
|
return points |
|
|
|
|
|
def calculate_extents(lbl, func=np.median): |
|
""" Aggregate bounding box sizes of objects in label images. """ |
|
if (isinstance(lbl,np.ndarray) and lbl.ndim==4) or (not isinstance(lbl,np.ndarray) and isinstance(lbl,Iterable)): |
|
return func(np.stack([calculate_extents(_lbl,func) for _lbl in lbl], axis=0), axis=0) |
|
|
|
n = lbl.ndim |
|
n in (2,3) or _raise(ValueError("label image should be 2- or 3-dimensional (or pass a list of these)")) |
|
|
|
regs = regionprops(lbl) |
|
if len(regs) == 0: |
|
return np.zeros(n) |
|
else: |
|
extents = np.array([np.array(r.bbox[n:])-np.array(r.bbox[:n]) for r in regs]) |
|
return func(extents, axis=0) |
|
|
|
|
|
def polyroi_bytearray(x,y,pos=None,subpixel=True): |
|
""" Byte array of polygon roi with provided x and y coordinates |
|
See https://github.com/imagej/imagej1/blob/master/ij/io/RoiDecoder.java |
|
""" |
|
import struct |
|
def _int16(x): |
|
return int(x).to_bytes(2, byteorder='big', signed=True) |
|
def _uint16(x): |
|
return int(x).to_bytes(2, byteorder='big', signed=False) |
|
def _int32(x): |
|
return int(x).to_bytes(4, byteorder='big', signed=True) |
|
def _float(x): |
|
return struct.pack(">f", x) |
|
|
|
subpixel = bool(subpixel) |
|
|
|
x_raw = np.asarray(x).ravel() + 0.5 |
|
y_raw = np.asarray(y).ravel() + 0.5 |
|
x = np.round(x_raw) |
|
y = np.round(y_raw) |
|
assert len(x) == len(y) |
|
top, left, bottom, right = y.min(), x.min(), y.max(), x.max() |
|
|
|
n_coords = len(x) |
|
bytes_header = 64 |
|
bytes_total = bytes_header + n_coords*2*2 + subpixel*n_coords*2*4 |
|
B = [0] * bytes_total |
|
B[ 0: 4] = map(ord,'Iout') |
|
B[ 4: 6] = _int16(227) |
|
B[ 6: 8] = _int16(0) |
|
B[ 8:10] = _int16(top) |
|
B[10:12] = _int16(left) |
|
B[12:14] = _int16(bottom) |
|
B[14:16] = _int16(right) |
|
B[16:18] = _uint16(n_coords) |
|
if subpixel: |
|
B[50:52] = _int16(128) |
|
if pos is not None: |
|
B[56:60] = _int32(pos) |
|
|
|
for i,(_x,_y) in enumerate(zip(x,y)): |
|
xs = bytes_header + 2*i |
|
ys = xs + 2*n_coords |
|
B[xs:xs+2] = _int16(_x - left) |
|
B[ys:ys+2] = _int16(_y - top) |
|
|
|
if subpixel: |
|
base1 = bytes_header + n_coords*2*2 |
|
base2 = base1 + n_coords*4 |
|
for i,(_x,_y) in enumerate(zip(x_raw,y_raw)): |
|
xs = base1 + 4*i |
|
ys = base2 + 4*i |
|
B[xs:xs+4] = _float(_x) |
|
B[ys:ys+4] = _float(_y) |
|
|
|
return bytearray(B) |
|
|
|
|
|
def export_imagej_rois(fname, polygons, set_position=True, subpixel=True, compression=ZIP_DEFLATED): |
|
""" polygons assumed to be a list of arrays with shape (id,2,c) """ |
|
|
|
if isinstance(polygons,np.ndarray): |
|
polygons = (polygons,) |
|
|
|
fname = Path(fname) |
|
if fname.suffix == '.zip': |
|
fname = fname.with_suffix('') |
|
|
|
with ZipFile(str(fname)+'.zip', mode='w', compression=compression) as roizip: |
|
for pos,polygroup in enumerate(polygons,start=1): |
|
for i,poly in enumerate(polygroup,start=1): |
|
roi = polyroi_bytearray(poly[1],poly[0], pos=(pos if set_position else None), subpixel=subpixel) |
|
roizip.writestr('{pos:03d}_{i:03d}.roi'.format(pos=pos,i=i), roi) |
|
|
|
|
|
def optimize_threshold(Y, Yhat, model, nms_thresh, measure='accuracy', iou_threshs=[0.3,0.5,0.7], bracket=None, tol=1e-2, maxiter=20, verbose=1): |
|
""" Tune prob_thresh for provided (fixed) nms_thresh to maximize matching score (for given measure and averaged over iou_threshs). """ |
|
np.isscalar(nms_thresh) or _raise(ValueError("nms_thresh must be a scalar")) |
|
iou_threshs = [iou_threshs] if np.isscalar(iou_threshs) else iou_threshs |
|
values = dict() |
|
|
|
if bracket is None: |
|
max_prob = max([np.max(prob) for prob, dist in Yhat]) |
|
bracket = max_prob/2, max_prob |
|
|
|
|
|
with tqdm(total=maxiter, disable=(verbose!=1), desc="NMS threshold = %g" % nms_thresh) as progress: |
|
|
|
def fn(thr): |
|
prob_thresh = np.clip(thr, *bracket) |
|
value = values.get(prob_thresh) |
|
if value is None: |
|
Y_instances = [model._instances_from_prediction(y.shape, *prob_dist, prob_thresh=prob_thresh, nms_thresh=nms_thresh)[0] for y,prob_dist in zip(Y,Yhat)] |
|
stats = matching_dataset(Y, Y_instances, thresh=iou_threshs, show_progress=False, parallel=True) |
|
values[prob_thresh] = value = np.mean([s._asdict()[measure] for s in stats]) |
|
if verbose > 1: |
|
print("{now} thresh: {prob_thresh:f} {measure}: {value:f}".format( |
|
now = datetime.datetime.now().strftime('%H:%M:%S'), |
|
prob_thresh = prob_thresh, |
|
measure = measure, |
|
value = value, |
|
), flush=True) |
|
else: |
|
progress.update() |
|
progress.set_postfix_str("{prob_thresh:.3f} -> {value:.3f}".format(prob_thresh=prob_thresh, value=value)) |
|
progress.refresh() |
|
return -value |
|
|
|
opt = minimize_scalar(fn, method='golden', bracket=bracket, tol=tol, options={'maxiter': maxiter}) |
|
|
|
verbose > 1 and print('\n',opt, flush=True) |
|
return opt.x, -opt.fun |
|
|
|
|
|
def _invert_dict(d): |
|
""" return v-> [k_1,k_2,k_3....] for k,v in d""" |
|
res = defaultdict(list) |
|
for k,v in d.items(): |
|
res[v].append(k) |
|
return res |
|
|
|
|
|
def mask_to_categorical(y, n_classes, classes, return_cls_dict=False): |
|
"""generates a multi-channel categorical class map |
|
|
|
Parameters |
|
---------- |
|
y : n-dimensional ndarray |
|
integer label array |
|
n_classes : int |
|
Number of different classes (without background) |
|
classes: dict, integer, or None |
|
the label to class assignment |
|
can be |
|
- dict {label -> class_id} |
|
the value of class_id can be |
|
0 -> background class |
|
1...n_classes -> the respective object class (1 ... n_classes) |
|
None -> ignore object (prob is set to -1 for the pixels of the object, except for background class) |
|
- single integer value or None -> broadcast value to all labels |
|
|
|
Returns |
|
------- |
|
probability map of shape y.shape+(n_classes+1,) (first channel is background) |
|
|
|
""" |
|
|
|
_check_label_array(y, 'y') |
|
if not (np.issubdtype(type(n_classes), np.integer) and n_classes>=1): |
|
raise ValueError(f"n_classes is '{n_classes}' but should be a positive integer") |
|
|
|
y_labels = np.unique(y[y>0]).tolist() |
|
|
|
|
|
if np.issubdtype(type(classes), np.integer) or classes is None: |
|
classes = dict((k,classes) for k in y_labels) |
|
elif isinstance(classes, dict): |
|
pass |
|
else: |
|
raise ValueError("classes should be dict, single scalar, or None!") |
|
|
|
if not set(y_labels).issubset(set(classes.keys())): |
|
raise ValueError(f"all gt labels should be present in class dict provided \ngt_labels found\n{set(y_labels)}\nclass dict labels provided\n{set(classes.keys())}") |
|
|
|
cls_dict = _invert_dict(classes) |
|
|
|
|
|
y_mask = np.zeros(y.shape+(n_classes+1,), np.float32) |
|
|
|
for cls, labels in cls_dict.items(): |
|
if cls is None: |
|
|
|
y_mask[np.isin(y, labels)] = -1 |
|
elif np.issubdtype(type(cls), np.integer) and 0 <= cls <= n_classes: |
|
y_mask[...,cls] = np.isin(y, labels) |
|
else: |
|
raise ValueError(f"Wrong class id '{cls}' (for n_classes={n_classes})") |
|
|
|
|
|
y_mask[...,0] = (y==0) |
|
|
|
if return_cls_dict: |
|
return y_mask, cls_dict |
|
else: |
|
return y_mask |
|
|
|
|
|
def _is_floatarray(x): |
|
return isinstance(x.dtype.type(0),np.floating) |
|
|
|
|
|
def abspath(root, relpath): |
|
from pathlib import Path |
|
root = Path(root) |
|
if root.is_dir(): |
|
path = root/relpath |
|
else: |
|
path = root.parent/relpath |
|
return str(path.absolute()) |
|
|