cellseg_sribd / README.md
Lewislou's picture
Update README.md
dd2cf59
|
raw
history blame
1.59 kB
---
license: apache-2.0
language:
- en
metrics:
- f1
tags:
- cell segmentation
- stardist
- hover-net
library_name: transformers
pipeline_tag: image-segmentation
datasets:
- Lewislou/cell_samples
---
### How to use
Here is how to use this model:
```python
from transformers import cellseg_sribd
from skimage import io, segmentation, morphology, measure, exposure
import numpy as np
import tifffile as tif
import requests
img_name = 'cell_00010.png'
def normalize_channel(img, lower=1, upper=99):
non_zero_vals = img[np.nonzero(img)]
percentiles = np.percentile(non_zero_vals, [lower, upper])
if percentiles[1] - percentiles[0] > 0.001:
img_norm = exposure.rescale_intensity(img, in_range=(percentiles[0], percentiles[1]), out_range='uint8')
else:
img_norm = img
return img_norm.astype(np.uint8)
if img_name.endswith('.tif') or img_name.endswith('.tiff'):
img_data = tif.imread(img_name)
else:
img_data = io.imread(img_name)
# normalize image data
if len(img_data.shape) == 2:
img_data = np.repeat(np.expand_dims(img_data, axis=-1), 3, axis=-1)
elif len(img_data.shape) == 3 and img_data.shape[-1] > 3:
img_data = img_data[:,:, :3]
else:
pass
pre_img_data = np.zeros(img_data.shape, dtype=np.uint8)
for i in range(3):
img_channel_i = img_data[:,:,i]
if len(img_channel_i[np.nonzero(img_channel_i)])>0:
pre_img_data[:,:,i] = normalize_channel(img_channel_i, lower=1, upper=99)
model = cellseg_sribd.from_pretrained("Lewislou/cellseg_sribd")
with torch.no_grad():
output = model(pre_img_data)
```