|
nmb_of_labels=1000; |
|
nmb_of_labs_per_module=25; |
|
nmb_of_modules=(nmb_of_labels/nmb_of_labs_per_module); |
|
relative_lab_seq=1:nmb_of_labs_per_module; |
|
nmb_of_subsets=2; |
|
|
|
patch=0; |
|
parfor module=1:nmb_of_modules |
|
m_label_ids=[]; |
|
m_labels=[]; |
|
m_data=[]; |
|
m_label_table=[relative_lab_seq;relative_lab_seq+(module-1)*nmb_of_labs_per_module]; |
|
for imgnt1kdataset=1:10 |
|
|
|
|
|
reportname1 = sprintf('/work/mathbiology/lheath2/data/imagenet1k/mat/train_data_batch_%d.mat', imgnt1kdataset); |
|
temp_lpad=load(reportname1,'data','labels') |
|
data=temp_lpad.data; |
|
labels=temp_lpad.labels; |
|
pos_seq=1:length(labels); |
|
for labs=relative_lab_seq |
|
idx=(labels==(labs+(module-1)*nmb_of_labs_per_module)); |
|
aa=pos_seq(idx); |
|
bb=[0*aa+imgnt1kdataset;aa;labels(idx)]; |
|
m_label_ids=[m_label_ids, bb]; |
|
m_labels=[m_labels,0*aa+labs]; |
|
m_data=[m_data;data(idx,:)]; |
|
end |
|
end |
|
nmb_dt=length(m_labels); |
|
set_lng=fix(nmb_dt/nmb_of_subsets); |
|
for subset=1:nmb_of_subsets |
|
if subset<nmb_of_subsets |
|
set=(1:set_lng)+(subset-1)*set_lng; |
|
else |
|
set=(1+(subset-1)*set_lng):nmb_dt; |
|
end |
|
data=m_data(set,:); |
|
labels=m_labels(:,set); |
|
label_ids=m_label_ids(:,set); |
|
label_table=m_label_table; |
|
out=fun_save_modularized_data(patch, module, subset,nmb_of_labs_per_module,data,labels,label_ids,label_table) |
|
end |
|
module |
|
end |
|
|