Upload SpydazWebAI_Mistral_Transformer.py
Browse files- SpydazWebAI_Mistral_Transformer.py +369 -185
SpydazWebAI_Mistral_Transformer.py
CHANGED
@@ -1,9 +1,5 @@
|
|
1 |
# SpydazWeb AI Mistral Transformer Handler !
|
2 |
|
3 |
-
from reportlab.pdfgen import canvas
|
4 |
-
from reportlab.lib.pagesizes import letter
|
5 |
-
from reportlab.lib.colors import HexColor
|
6 |
-
import os
|
7 |
from shutil import copyfile
|
8 |
from collections import defaultdict
|
9 |
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
|
@@ -18,7 +14,7 @@ from transformers.utils import is_sentencepiece_available, logging
|
|
18 |
from transformers.utils.versions import require_version
|
19 |
if TYPE_CHECKING:
|
20 |
from transformers.tokenization_utils_base import TextInput
|
21 |
-
|
22 |
|
23 |
|
24 |
|
@@ -32,7 +28,8 @@ B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
|
|
32 |
|
33 |
# fmt: off
|
34 |
DEFAULT_SYSTEM_PROMPT = """you are the world archive of knowledge and a friendly helpful artificial intelligent being:
|
35 |
-
consider if the current task denotes
|
|
|
36 |
Be flirtatious and joyfull, always willing to help or engage in conversation or express an opinion or sentiment:
|
37 |
answer all questions indepth supply and helpfull references where possible; """
|
38 |
# fmt: on
|
@@ -57,7 +54,7 @@ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
|
57 |
from transformers.modeling_outputs import BaseModelOutputWithPast,CausalLMOutputWithPast,SequenceClassifierOutputWithPast,TokenClassifierOutput,QuestionAnsweringModelOutput,MoeCausalLMOutputWithPast,MoeModelOutputWithPast
|
58 |
|
59 |
logger = logging.get_logger(__name__)
|
60 |
-
_CONFIG_FOR_DOC = "
|
61 |
MISTRAL_START_DOCSTRING = r"""
|
62 |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
63 |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
@@ -82,8 +79,6 @@ MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
|
82 |
"mistralai/Mistral-7B-v0.1": "https://huggingface.co/mistralai/Mistral-7B-v0.1/resolve/main/config.json",
|
83 |
"mistralai/Mistral-7B-Instruct-v0.1": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1/resolve/main/config.json",
|
84 |
}
|
85 |
-
|
86 |
-
|
87 |
class MistralStarConfig(PretrainedConfig):
|
88 |
r"""
|
89 |
This is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an
|
@@ -637,71 +632,6 @@ class MixtralConfig(PretrainedConfig):
|
|
637 |
|
638 |
|
639 |
################################ Quiet Star Functions ################################
|
640 |
-
|
641 |
-
def save_tokens_with_rewards_to_pdf(input_ids, token_rewards, tokenizer, output_file="text.pdf", eps=0.2, eps2=0.5):
|
642 |
-
from reportlab.pdfgen import canvas
|
643 |
-
from reportlab.lib.pagesizes import letter
|
644 |
-
from reportlab.lib.colors import HexColor
|
645 |
-
c = canvas.Canvas(output_file, pagesize=letter)
|
646 |
-
c.setFont("Courier", 8)
|
647 |
-
x, y = 50, 750
|
648 |
-
previous_text = ""
|
649 |
-
current_text = ""
|
650 |
-
for token_idx, reward in enumerate(token_rewards):
|
651 |
-
current_text = tokenizer.decode(input_ids[: token_idx + 1])
|
652 |
-
if current_text != previous_text:
|
653 |
-
diff_text = current_text[len(previous_text) :]
|
654 |
-
if "\n" in diff_text:
|
655 |
-
lines = diff_text.split("\n")
|
656 |
-
for line_idx, line in enumerate(lines):
|
657 |
-
if line_idx > 0:
|
658 |
-
x = 50
|
659 |
-
y -= 12
|
660 |
-
if abs(reward) < eps:
|
661 |
-
opacity = 0
|
662 |
-
elif abs(reward) > eps2:
|
663 |
-
opacity = 0.8
|
664 |
-
else:
|
665 |
-
opacity = 0.8 * (abs(reward) - eps) / (eps2 - eps)
|
666 |
-
text_width = c.stringWidth(line)
|
667 |
-
if reward > 0:
|
668 |
-
highlight_color = HexColor("#4CCD99")
|
669 |
-
else:
|
670 |
-
highlight_color = HexColor("#FFC700")
|
671 |
-
highlight_color.alpha = opacity
|
672 |
-
c.setFillColor(highlight_color)
|
673 |
-
c.rect(x, y - 2, text_width, 10, fill=True, stroke=False)
|
674 |
-
c.setFillColor(HexColor("#000000"))
|
675 |
-
c.drawString(x, y, line)
|
676 |
-
x += text_width
|
677 |
-
else:
|
678 |
-
if abs(reward) < eps:
|
679 |
-
opacity = 0
|
680 |
-
elif abs(reward) > eps2:
|
681 |
-
opacity = 0.8
|
682 |
-
else:
|
683 |
-
opacity = 0.8 * (abs(reward) - eps) / (eps2 - eps)
|
684 |
-
text_width = c.stringWidth(diff_text)
|
685 |
-
if reward > 0:
|
686 |
-
highlight_color = HexColor("#4CCD99")
|
687 |
-
else:
|
688 |
-
highlight_color = HexColor("#FFC700")
|
689 |
-
highlight_color.alpha = opacity
|
690 |
-
c.setFillColor(highlight_color)
|
691 |
-
c.rect(x, y - 2, text_width, 10, fill=True, stroke=False)
|
692 |
-
c.setFillColor(HexColor("#000000"))
|
693 |
-
c.drawString(x, y, diff_text)
|
694 |
-
x += text_width
|
695 |
-
if x > 550:
|
696 |
-
x = 50
|
697 |
-
y -= 12
|
698 |
-
if y < 50:
|
699 |
-
c.showPage()
|
700 |
-
y = 750
|
701 |
-
x = 50
|
702 |
-
previous_text = current_text
|
703 |
-
c.showPage()
|
704 |
-
c.save()
|
705 |
def nonzero_mean(x, axis=None):
|
706 |
if axis is not None:
|
707 |
return x.sum(axis) / (x != 0).sum(axis)
|
@@ -721,8 +651,6 @@ def _get_unpad_data(attention_mask):
|
|
721 |
)
|
722 |
|
723 |
################################ Main Network Component ################################
|
724 |
-
|
725 |
-
|
726 |
class MistralRotaryEmbedding(nn.Module):
|
727 |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
728 |
super().__init__()
|
@@ -929,7 +857,7 @@ class MistralSdpaAttention(MistralAttention):
|
|
929 |
**kwargs,
|
930 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
931 |
if output_attentions:
|
932 |
-
|
933 |
logger.warning_once(
|
934 |
"MistralModel is using MistralSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
935 |
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
@@ -1090,7 +1018,7 @@ class MistralDecoderLayer(nn.Module):
|
|
1090 |
|
1091 |
|
1092 |
|
1093 |
-
config_class =
|
1094 |
base_model_prefix = "model"
|
1095 |
supports_gradient_checkpointing = True
|
1096 |
_no_split_modules = ["MistralDecoderLayer"]
|
@@ -1110,12 +1038,6 @@ class MistralDecoderLayer(nn.Module):
|
|
1110 |
module.weight.data.normal_(mean=0.0, std=std)
|
1111 |
if module.padding_idx is not None:
|
1112 |
module.weight.data[module.padding_idx].zero_()
|
1113 |
-
|
1114 |
-
################################ TRANSFORMER NETWORK ##############################
|
1115 |
-
|
1116 |
-
|
1117 |
-
################################ MOE MiXtral Model : ################################
|
1118 |
-
|
1119 |
class MixtralBlockSparseTop2MLP(nn.Module):
|
1120 |
def __init__(self, config: MixtralConfig):
|
1121 |
super().__init__()
|
@@ -1204,7 +1126,7 @@ class MixtralDecoderLayer(nn.Module):
|
|
1204 |
self.hidden_size = config.hidden_size
|
1205 |
|
1206 |
self.self_attn = MISTRAL_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
|
1207 |
-
|
1208 |
self.block_sparse_moe = MixtralSparseMoeBlock(config)
|
1209 |
self.input_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1210 |
self.post_attention_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
@@ -1265,6 +1187,12 @@ class MixtralDecoderLayer(nn.Module):
|
|
1265 |
hidden_states, router_logits = self.block_sparse_moe(hidden_states)
|
1266 |
hidden_states = residual + hidden_states
|
1267 |
|
|
|
|
|
|
|
|
|
|
|
|
|
1268 |
outputs = (hidden_states,)
|
1269 |
|
1270 |
if output_attentions:
|
@@ -1278,8 +1206,122 @@ class MixtralDecoderLayer(nn.Module):
|
|
1278 |
|
1279 |
return outputs
|
1280 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1281 |
################################ Pretrained Mistral MODEL ##############################
|
|
|
|
|
|
|
|
|
1282 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1283 |
@add_start_docstrings(
|
1284 |
"The bare Mistral Model outputting raw hidden-states without any specific head on top.",
|
1285 |
MISTRAL_START_DOCSTRING,
|
@@ -1535,7 +1577,7 @@ class MistralStarModel(MistralPreTrainedModel):
|
|
1535 |
use_cache: bool,
|
1536 |
output_attentions: bool,
|
1537 |
):
|
1538 |
-
|
1539 |
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
|
1540 |
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
|
1541 |
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
|
@@ -1633,124 +1675,265 @@ class MistralStarModel(MistralPreTrainedModel):
|
|
1633 |
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
1634 |
|
1635 |
return causal_mask
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1636 |
|
1637 |
-
|
|
|
|
|
1638 |
|
1639 |
-
def
|
1640 |
-
|
1641 |
-
|
1642 |
-
|
1643 |
-
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
|
1644 |
|
1645 |
-
|
1646 |
-
|
1647 |
-
|
|
|
|
|
|
|
1648 |
|
1649 |
-
|
1650 |
-
|
1651 |
-
|
1652 |
-
shape [batch_size X sequence_length, num_experts].
|
1653 |
-
attention_mask (`torch.Tensor`, None):
|
1654 |
-
The attention_mask used in forward function
|
1655 |
-
shape [batch_size X sequence_length] if not None.
|
1656 |
-
num_experts (`int`, *optional*):
|
1657 |
-
Number of experts
|
1658 |
|
1659 |
-
|
1660 |
-
|
1661 |
-
"""
|
1662 |
-
if gate_logits is None or not isinstance(gate_logits, tuple):
|
1663 |
-
return 0
|
1664 |
|
1665 |
-
|
1666 |
-
|
1667 |
-
concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
|
1668 |
|
1669 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1670 |
|
1671 |
-
|
1672 |
|
1673 |
-
|
|
|
|
|
|
|
|
|
1674 |
|
1675 |
-
|
1676 |
-
|
1677 |
-
|
|
|
|
|
1678 |
|
1679 |
-
|
1680 |
-
|
1681 |
-
else:
|
1682 |
-
batch_size, sequence_length = attention_mask.shape
|
1683 |
-
num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
|
1684 |
|
1685 |
-
|
1686 |
-
|
1687 |
-
|
1688 |
-
|
1689 |
-
.
|
1690 |
-
|
1691 |
-
|
|
|
1692 |
|
1693 |
-
|
1694 |
-
|
1695 |
-
|
1696 |
-
|
|
|
1697 |
|
1698 |
-
|
1699 |
-
|
1700 |
-
|
1701 |
-
|
1702 |
-
|
1703 |
-
.to(compute_device)
|
1704 |
)
|
1705 |
|
1706 |
-
|
1707 |
-
|
1708 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1709 |
)
|
1710 |
|
1711 |
-
|
1712 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1713 |
|
1714 |
-
|
1715 |
-
|
1716 |
-
|
1717 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1718 |
|
1719 |
-
|
1720 |
-
|
1721 |
-
|
1722 |
|
1723 |
-
|
1724 |
-
|
1725 |
-
|
1726 |
-
|
1727 |
-
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
1728 |
-
"""
|
1729 |
-
@add_start_docstrings(
|
1730 |
-
"The bare Mixtral Model outputting raw hidden-states without any specific head on top.",
|
1731 |
-
MIXTRAL_START_DOCSTRING,
|
1732 |
-
)
|
1733 |
-
# Copied from transformers.models.qwen2.modeling_qwen2.Qwen2PreTrainedModel with Qwen2->Mixtral
|
1734 |
-
class MixtralPreTrainedModel(PreTrainedModel):
|
1735 |
-
config_class = MixtralConfig
|
1736 |
-
base_model_prefix = "model"
|
1737 |
-
supports_gradient_checkpointing = True
|
1738 |
-
_no_split_modules = ["MixtralDecoderLayer"]
|
1739 |
-
_skip_keys_device_placement = "past_key_values"
|
1740 |
-
_supports_flash_attn_2 = False
|
1741 |
-
_supports_sdpa = True
|
1742 |
-
_supports_cache_class = True
|
1743 |
|
1744 |
-
|
1745 |
-
|
1746 |
-
|
1747 |
-
|
1748 |
-
|
1749 |
-
|
1750 |
-
|
1751 |
-
|
1752 |
-
|
1753 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1754 |
MIXTRAL_INPUTS_DOCSTRING = r"""
|
1755 |
Args:
|
1756 |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
@@ -1824,7 +2007,6 @@ MIXTRAL_INPUTS_DOCSTRING = r"""
|
|
1824 |
"The bare Mixtral Model outputting raw hidden-states without any specific head on top.",
|
1825 |
MIXTRAL_START_DOCSTRING,
|
1826 |
)
|
1827 |
-
# copied from transformers.models.mistral.modeling_mistral.MistralModel with MISTRAL->MIXTRAL,Mistral->Mixtral
|
1828 |
class MixtralModel(MixtralPreTrainedModel):
|
1829 |
"""
|
1830 |
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MixtralDecoderLayer`]
|
@@ -2071,6 +2253,8 @@ class MixtralModel(MixtralPreTrainedModel):
|
|
2071 |
|
2072 |
|
2073 |
################################ H-E-A-D-S : ##############################
|
|
|
|
|
2074 |
class MixtralForCausalLM(MixtralPreTrainedModel):
|
2075 |
_tied_weights_keys = ["lm_head.weight"]
|
2076 |
|
@@ -2516,7 +2700,7 @@ class MistralStarForCausalLM(MistralPreTrainedModel):
|
|
2516 |
|
2517 |
def __init__(self, config):
|
2518 |
super().__init__(config)
|
2519 |
-
self.model =
|
2520 |
self.vocab_size = config.vocab_size
|
2521 |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
2522 |
self.max_thoughts = config.max_thoughts
|
@@ -3815,7 +3999,7 @@ class MistralQuietForCausalLM(MistralPreTrainedModel):
|
|
3815 |
)
|
3816 |
return reordered_past
|
3817 |
|
3818 |
-
|
3819 |
@add_start_docstrings(
|
3820 |
"""
|
3821 |
The Mistral Model transformer with a sequence classification head on top (linear layer).
|
|
|
1 |
# SpydazWeb AI Mistral Transformer Handler !
|
2 |
|
|
|
|
|
|
|
|
|
3 |
from shutil import copyfile
|
4 |
from collections import defaultdict
|
5 |
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
|
|
|
14 |
from transformers.utils.versions import require_version
|
15 |
if TYPE_CHECKING:
|
16 |
from transformers.tokenization_utils_base import TextInput
|
17 |
+
import os
|
18 |
|
19 |
|
20 |
|
|
|
28 |
|
29 |
# fmt: off
|
30 |
DEFAULT_SYSTEM_PROMPT = """you are the world archive of knowledge and a friendly helpful artificial intelligent being:
|
31 |
+
consider if the current task denotes the creation of a function in python that can be saved and re-used for a future task,
|
32 |
+
if created, return the artifact to the user, in the response, or if access is given to be save as a file on the user system:
|
33 |
Be flirtatious and joyfull, always willing to help or engage in conversation or express an opinion or sentiment:
|
34 |
answer all questions indepth supply and helpfull references where possible; """
|
35 |
# fmt: on
|
|
|
54 |
from transformers.modeling_outputs import BaseModelOutputWithPast,CausalLMOutputWithPast,SequenceClassifierOutputWithPast,TokenClassifierOutput,QuestionAnsweringModelOutput,MoeCausalLMOutputWithPast,MoeModelOutputWithPast
|
55 |
|
56 |
logger = logging.get_logger(__name__)
|
57 |
+
_CONFIG_FOR_DOC = "MistralStarConfig"
|
58 |
MISTRAL_START_DOCSTRING = r"""
|
59 |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
60 |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
|
|
79 |
"mistralai/Mistral-7B-v0.1": "https://huggingface.co/mistralai/Mistral-7B-v0.1/resolve/main/config.json",
|
80 |
"mistralai/Mistral-7B-Instruct-v0.1": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1/resolve/main/config.json",
|
81 |
}
|
|
|
|
|
82 |
class MistralStarConfig(PretrainedConfig):
|
83 |
r"""
|
84 |
This is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an
|
|
|
632 |
|
633 |
|
634 |
################################ Quiet Star Functions ################################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
635 |
def nonzero_mean(x, axis=None):
|
636 |
if axis is not None:
|
637 |
return x.sum(axis) / (x != 0).sum(axis)
|
|
|
651 |
)
|
652 |
|
653 |
################################ Main Network Component ################################
|
|
|
|
|
654 |
class MistralRotaryEmbedding(nn.Module):
|
655 |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
656 |
super().__init__()
|
|
|
857 |
**kwargs,
|
858 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
859 |
if output_attentions:
|
860 |
+
|
861 |
logger.warning_once(
|
862 |
"MistralModel is using MistralSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
863 |
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
|
|
1018 |
|
1019 |
|
1020 |
|
1021 |
+
config_class = MistralStarConfig
|
1022 |
base_model_prefix = "model"
|
1023 |
supports_gradient_checkpointing = True
|
1024 |
_no_split_modules = ["MistralDecoderLayer"]
|
|
|
1038 |
module.weight.data.normal_(mean=0.0, std=std)
|
1039 |
if module.padding_idx is not None:
|
1040 |
module.weight.data[module.padding_idx].zero_()
|
|
|
|
|
|
|
|
|
|
|
|
|
1041 |
class MixtralBlockSparseTop2MLP(nn.Module):
|
1042 |
def __init__(self, config: MixtralConfig):
|
1043 |
super().__init__()
|
|
|
1126 |
self.hidden_size = config.hidden_size
|
1127 |
|
1128 |
self.self_attn = MISTRAL_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
|
1129 |
+
self.mlp = MistralMLP(config)
|
1130 |
self.block_sparse_moe = MixtralSparseMoeBlock(config)
|
1131 |
self.input_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1132 |
self.post_attention_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
1187 |
hidden_states, router_logits = self.block_sparse_moe(hidden_states)
|
1188 |
hidden_states = residual + hidden_states
|
1189 |
|
1190 |
+
# Fully Connected
|
1191 |
+
residual = hidden_states
|
1192 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
1193 |
+
hidden_states = self.mlp(hidden_states)
|
1194 |
+
hidden_states = residual + hidden_states
|
1195 |
+
|
1196 |
outputs = (hidden_states,)
|
1197 |
|
1198 |
if output_attentions:
|
|
|
1206 |
|
1207 |
return outputs
|
1208 |
|
1209 |
+
def load_balancing_loss_func(
|
1210 |
+
gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2, attention_mask: Optional[torch.Tensor] = None
|
1211 |
+
) -> float:
|
1212 |
+
r"""
|
1213 |
+
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
|
1214 |
+
|
1215 |
+
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
|
1216 |
+
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
|
1217 |
+
experts is too unbalanced.
|
1218 |
+
|
1219 |
+
Args:
|
1220 |
+
gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
|
1221 |
+
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
|
1222 |
+
shape [batch_size X sequence_length, num_experts].
|
1223 |
+
attention_mask (`torch.Tensor`, None):
|
1224 |
+
The attention_mask used in forward function
|
1225 |
+
shape [batch_size X sequence_length] if not None.
|
1226 |
+
num_experts (`int`, *optional*):
|
1227 |
+
Number of experts
|
1228 |
+
|
1229 |
+
Returns:
|
1230 |
+
The auxiliary loss.
|
1231 |
+
"""
|
1232 |
+
if gate_logits is None or not isinstance(gate_logits, tuple):
|
1233 |
+
return 0
|
1234 |
+
|
1235 |
+
if isinstance(gate_logits, tuple):
|
1236 |
+
compute_device = gate_logits[0].device
|
1237 |
+
concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
|
1238 |
+
|
1239 |
+
routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
|
1240 |
+
|
1241 |
+
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
|
1242 |
+
|
1243 |
+
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
|
1244 |
+
|
1245 |
+
if attention_mask is None:
|
1246 |
+
# Compute the percentage of tokens routed to each experts
|
1247 |
+
tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
|
1248 |
+
|
1249 |
+
# Compute the average probability of routing to these experts
|
1250 |
+
router_prob_per_expert = torch.mean(routing_weights, dim=0)
|
1251 |
+
else:
|
1252 |
+
batch_size, sequence_length = attention_mask.shape
|
1253 |
+
num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
|
1254 |
+
|
1255 |
+
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
|
1256 |
+
expert_attention_mask = (
|
1257 |
+
attention_mask[None, :, :, None, None]
|
1258 |
+
.expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
|
1259 |
+
.reshape(-1, top_k, num_experts)
|
1260 |
+
.to(compute_device)
|
1261 |
+
)
|
1262 |
+
|
1263 |
+
# Compute the percentage of tokens routed to each experts
|
1264 |
+
tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
|
1265 |
+
expert_attention_mask, dim=0
|
1266 |
+
)
|
1267 |
+
|
1268 |
+
# Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
|
1269 |
+
router_per_expert_attention_mask = (
|
1270 |
+
attention_mask[None, :, :, None]
|
1271 |
+
.expand((num_hidden_layers, batch_size, sequence_length, num_experts))
|
1272 |
+
.reshape(-1, num_experts)
|
1273 |
+
.to(compute_device)
|
1274 |
+
)
|
1275 |
+
|
1276 |
+
# Compute the average probability of routing to these experts
|
1277 |
+
router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
|
1278 |
+
router_per_expert_attention_mask, dim=0
|
1279 |
+
)
|
1280 |
+
|
1281 |
+
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
|
1282 |
+
return overall_loss * num_experts
|
1283 |
+
|
1284 |
################################ Pretrained Mistral MODEL ##############################
|
1285 |
+
MIXTRAL_START_DOCSTRING = r"""
|
1286 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
1287 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
1288 |
+
etc.)
|
1289 |
|
1290 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
1291 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
1292 |
+
and behavior.
|
1293 |
+
|
1294 |
+
Parameters:
|
1295 |
+
config ([`MixtralConfig`]):
|
1296 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
1297 |
+
load the weights associated with the model, only the configuration. Check out the
|
1298 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
1299 |
+
"""
|
1300 |
+
@add_start_docstrings(
|
1301 |
+
"The bare Mixtral Model outputting raw hidden-states without any specific head on top.",
|
1302 |
+
MIXTRAL_START_DOCSTRING,
|
1303 |
+
)
|
1304 |
+
# Copied from transformers.models.qwen2.modeling_qwen2.Qwen2PreTrainedModel with Qwen2->Mixtral
|
1305 |
+
class MixtralPreTrainedModel(PreTrainedModel):
|
1306 |
+
config_class = MixtralConfig
|
1307 |
+
base_model_prefix = "model"
|
1308 |
+
supports_gradient_checkpointing = True
|
1309 |
+
_no_split_modules = ["MixtralDecoderLayer"]
|
1310 |
+
_skip_keys_device_placement = "past_key_values"
|
1311 |
+
_supports_flash_attn_2 = False
|
1312 |
+
_supports_sdpa = True
|
1313 |
+
_supports_cache_class = True
|
1314 |
+
|
1315 |
+
def _init_weights(self, module):
|
1316 |
+
std = self.config.initializer_range
|
1317 |
+
if isinstance(module, nn.Linear):
|
1318 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
1319 |
+
if module.bias is not None:
|
1320 |
+
module.bias.data.zero_()
|
1321 |
+
elif isinstance(module, nn.Embedding):
|
1322 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
1323 |
+
if module.padding_idx is not None:
|
1324 |
+
module.weight.data[module.padding_idx].zero_()
|
1325 |
@add_start_docstrings(
|
1326 |
"The bare Mistral Model outputting raw hidden-states without any specific head on top.",
|
1327 |
MISTRAL_START_DOCSTRING,
|
|
|
1577 |
use_cache: bool,
|
1578 |
output_attentions: bool,
|
1579 |
):
|
1580 |
+
|
1581 |
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
|
1582 |
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
|
1583 |
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
|
|
|
1675 |
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
1676 |
|
1677 |
return causal_mask
|
1678 |
+
@add_start_docstrings(
|
1679 |
+
"The bare Mistral Model outputting raw hidden-states without any specific head on top.",
|
1680 |
+
MISTRAL_START_DOCSTRING,
|
1681 |
+
)
|
1682 |
+
class MistralModel(MistralPreTrainedModel):
|
1683 |
+
"""
|
1684 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MistralDecoderLayer`]
|
1685 |
|
1686 |
+
Args:
|
1687 |
+
config: MistralConfig
|
1688 |
+
"""
|
1689 |
|
1690 |
+
def __init__(self, config: MistralConfig):
|
1691 |
+
super().__init__(config)
|
1692 |
+
self.padding_idx = config.pad_token_id
|
1693 |
+
self.vocab_size = config.vocab_size
|
|
|
1694 |
|
1695 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
1696 |
+
self.layers = nn.ModuleList(
|
1697 |
+
[MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
1698 |
+
)
|
1699 |
+
self._attn_implementation = config._attn_implementation
|
1700 |
+
self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1701 |
|
1702 |
+
self.gradient_checkpointing = False
|
1703 |
+
# Initialize weights and apply final processing
|
1704 |
+
self.post_init()
|
|
|
|
|
|
|
|
|
|
|
|
|
1705 |
|
1706 |
+
def get_input_embeddings(self):
|
1707 |
+
return self.embed_tokens
|
|
|
|
|
|
|
1708 |
|
1709 |
+
def set_input_embeddings(self, value):
|
1710 |
+
self.embed_tokens = value
|
|
|
1711 |
|
1712 |
+
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
|
1713 |
+
def forward(
|
1714 |
+
self,
|
1715 |
+
input_ids: torch.LongTensor = None,
|
1716 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1717 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1718 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1719 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1720 |
+
use_cache: Optional[bool] = None,
|
1721 |
+
output_attentions: Optional[bool] = None,
|
1722 |
+
output_hidden_states: Optional[bool] = None,
|
1723 |
+
return_dict: Optional[bool] = None,
|
1724 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1725 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
1726 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1727 |
+
output_hidden_states = (
|
1728 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1729 |
+
)
|
1730 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1731 |
|
1732 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1733 |
|
1734 |
+
# retrieve input_ids and inputs_embeds
|
1735 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
1736 |
+
raise ValueError(
|
1737 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
1738 |
+
)
|
1739 |
|
1740 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
1741 |
+
logger.warning_once(
|
1742 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
1743 |
+
)
|
1744 |
+
use_cache = False
|
1745 |
|
1746 |
+
if inputs_embeds is None:
|
1747 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
|
|
|
|
|
|
1748 |
|
1749 |
+
return_legacy_cache = False
|
1750 |
+
if use_cache and not isinstance(past_key_values, Cache):
|
1751 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
1752 |
+
return_legacy_cache = True
|
1753 |
+
logger.warning_once(
|
1754 |
+
"We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. "
|
1755 |
+
"Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)"
|
1756 |
+
)
|
1757 |
|
1758 |
+
if cache_position is None:
|
1759 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
1760 |
+
cache_position = torch.arange(
|
1761 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
1762 |
+
)
|
1763 |
|
1764 |
+
if position_ids is None:
|
1765 |
+
position_ids = cache_position.unsqueeze(0)
|
1766 |
+
|
1767 |
+
causal_mask = self._update_causal_mask(
|
1768 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, use_cache, output_attentions
|
|
|
1769 |
)
|
1770 |
|
1771 |
+
hidden_states = inputs_embeds
|
1772 |
+
|
1773 |
+
# decoder layers
|
1774 |
+
all_hidden_states = () if output_hidden_states else None
|
1775 |
+
all_self_attns = () if output_attentions else None
|
1776 |
+
next_decoder_cache = None
|
1777 |
+
|
1778 |
+
for decoder_layer in self.layers:
|
1779 |
+
if output_hidden_states:
|
1780 |
+
all_hidden_states += (hidden_states,)
|
1781 |
+
|
1782 |
+
if self.gradient_checkpointing and self.training:
|
1783 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1784 |
+
decoder_layer.__call__,
|
1785 |
+
hidden_states,
|
1786 |
+
causal_mask,
|
1787 |
+
position_ids,
|
1788 |
+
past_key_values,
|
1789 |
+
output_attentions,
|
1790 |
+
use_cache,
|
1791 |
+
cache_position,
|
1792 |
+
)
|
1793 |
+
else:
|
1794 |
+
layer_outputs = decoder_layer(
|
1795 |
+
hidden_states,
|
1796 |
+
attention_mask=causal_mask,
|
1797 |
+
position_ids=position_ids,
|
1798 |
+
past_key_value=past_key_values,
|
1799 |
+
output_attentions=output_attentions,
|
1800 |
+
use_cache=use_cache,
|
1801 |
+
cache_position=cache_position,
|
1802 |
+
)
|
1803 |
+
|
1804 |
+
hidden_states = layer_outputs[0]
|
1805 |
+
|
1806 |
+
if use_cache:
|
1807 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1808 |
+
|
1809 |
+
if output_attentions:
|
1810 |
+
all_self_attns += (layer_outputs[1],)
|
1811 |
+
|
1812 |
+
hidden_states = self.norm(hidden_states)
|
1813 |
+
|
1814 |
+
# add hidden states from the last decoder layer
|
1815 |
+
if output_hidden_states:
|
1816 |
+
all_hidden_states += (hidden_states,)
|
1817 |
+
|
1818 |
+
next_cache = next_decoder_cache if use_cache else None
|
1819 |
+
if return_legacy_cache:
|
1820 |
+
next_cache = next_cache.to_legacy_cache()
|
1821 |
+
|
1822 |
+
if not return_dict:
|
1823 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
1824 |
+
return BaseModelOutputWithPast(
|
1825 |
+
last_hidden_state=hidden_states,
|
1826 |
+
past_key_values=next_cache,
|
1827 |
+
hidden_states=all_hidden_states,
|
1828 |
+
attentions=all_self_attns,
|
1829 |
)
|
1830 |
|
1831 |
+
def _update_causal_mask(
|
1832 |
+
self,
|
1833 |
+
attention_mask: torch.Tensor,
|
1834 |
+
input_tensor: torch.Tensor,
|
1835 |
+
cache_position: torch.Tensor,
|
1836 |
+
past_key_values: Cache,
|
1837 |
+
use_cache: bool,
|
1838 |
+
output_attentions: bool,
|
1839 |
+
):
|
1840 |
+
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
|
1841 |
+
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
|
1842 |
+
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
|
1843 |
|
1844 |
+
if self._attn_implementation == "flash_attention_2":
|
1845 |
+
if attention_mask is not None and use_cache:
|
1846 |
+
is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0]
|
1847 |
+
if is_padding_right:
|
1848 |
+
raise ValueError(
|
1849 |
+
"You are attempting to perform batched generation with padding_side='right'"
|
1850 |
+
" this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to "
|
1851 |
+
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
1852 |
+
)
|
1853 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
1854 |
+
return attention_mask
|
1855 |
+
return None
|
1856 |
|
1857 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
1858 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
1859 |
+
# to infer the attention mask.
|
1860 |
|
1861 |
+
# cache_position must be valid here no matter which cache we use
|
1862 |
+
past_seen_tokens = cache_position[0] if past_key_values is not None else 0
|
1863 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
1864 |
+
using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1865 |
|
1866 |
+
if (
|
1867 |
+
self.config._attn_implementation == "sdpa"
|
1868 |
+
and not (using_static_cache or using_sliding_window_cache)
|
1869 |
+
and not output_attentions
|
1870 |
+
):
|
1871 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
1872 |
+
attention_mask,
|
1873 |
+
inputs_embeds=input_tensor,
|
1874 |
+
past_key_values_length=past_seen_tokens,
|
1875 |
+
sliding_window=self.config.sliding_window,
|
1876 |
+
is_training=self.training,
|
1877 |
+
):
|
1878 |
+
return None
|
1879 |
+
|
1880 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
1881 |
+
min_dtype = torch.finfo(dtype).min
|
1882 |
+
sequence_length = input_tensor.shape[1]
|
1883 |
+
# SlidingWindowCache
|
1884 |
+
if using_sliding_window_cache:
|
1885 |
+
target_length = max(sequence_length, self.config.sliding_window)
|
1886 |
+
# StaticCache
|
1887 |
+
elif using_static_cache:
|
1888 |
+
target_length = past_key_values.get_max_length()
|
1889 |
+
# DynamicCache or no cache
|
1890 |
+
else:
|
1891 |
+
target_length = (
|
1892 |
+
attention_mask.shape[-1]
|
1893 |
+
if isinstance(attention_mask, torch.Tensor)
|
1894 |
+
else past_seen_tokens + sequence_length + 1
|
1895 |
+
)
|
1896 |
+
|
1897 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
1898 |
+
# in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
|
1899 |
+
if attention_mask.max() != 0:
|
1900 |
+
raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`")
|
1901 |
+
causal_mask = attention_mask
|
1902 |
+
else:
|
1903 |
+
causal_mask = torch.full(
|
1904 |
+
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
1905 |
+
)
|
1906 |
+
exclude_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
1907 |
+
if self.config.sliding_window is not None:
|
1908 |
+
if not using_sliding_window_cache or sequence_length > self.config.sliding_window:
|
1909 |
+
exclude_mask.bitwise_or_(
|
1910 |
+
torch.arange(target_length, device=device)
|
1911 |
+
<= (cache_position.reshape(-1, 1) - self.config.sliding_window)
|
1912 |
+
)
|
1913 |
+
causal_mask *= exclude_mask
|
1914 |
+
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
|
1915 |
+
if attention_mask is not None:
|
1916 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
1917 |
+
if attention_mask.dim() == 2:
|
1918 |
+
mask_length = attention_mask.shape[-1]
|
1919 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
1920 |
+
padding_mask = padding_mask == 0
|
1921 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
1922 |
+
padding_mask, min_dtype
|
1923 |
+
)
|
1924 |
+
|
1925 |
+
if (
|
1926 |
+
self.config._attn_implementation == "sdpa"
|
1927 |
+
and attention_mask is not None
|
1928 |
+
and attention_mask.device.type == "cuda"
|
1929 |
+
and not output_attentions
|
1930 |
+
):
|
1931 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
1932 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
1933 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
1934 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
1935 |
+
|
1936 |
+
return causal_mask
|
1937 |
MIXTRAL_INPUTS_DOCSTRING = r"""
|
1938 |
Args:
|
1939 |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
|
|
2007 |
"The bare Mixtral Model outputting raw hidden-states without any specific head on top.",
|
2008 |
MIXTRAL_START_DOCSTRING,
|
2009 |
)
|
|
|
2010 |
class MixtralModel(MixtralPreTrainedModel):
|
2011 |
"""
|
2012 |
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MixtralDecoderLayer`]
|
|
|
2253 |
|
2254 |
|
2255 |
################################ H-E-A-D-S : ##############################
|
2256 |
+
|
2257 |
+
################################ CausalLM ##############################
|
2258 |
class MixtralForCausalLM(MixtralPreTrainedModel):
|
2259 |
_tied_weights_keys = ["lm_head.weight"]
|
2260 |
|
|
|
2700 |
|
2701 |
def __init__(self, config):
|
2702 |
super().__init__(config)
|
2703 |
+
self.model = MistralStarModel(config)
|
2704 |
self.vocab_size = config.vocab_size
|
2705 |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
2706 |
self.max_thoughts = config.max_thoughts
|
|
|
3999 |
)
|
4000 |
return reordered_past
|
4001 |
|
4002 |
+
############################## Extra Heads #################################
|
4003 |
@add_start_docstrings(
|
4004 |
"""
|
4005 |
The Mistral Model transformer with a sequence classification head on top (linear layer).
|