Upload configuration_utils.py
Browse files- configuration_utils.py +1133 -0
configuration_utils.py
ADDED
@@ -0,0 +1,1133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" Configuration base class and utilities."""
|
17 |
+
|
18 |
+
|
19 |
+
import copy
|
20 |
+
import json
|
21 |
+
import os
|
22 |
+
import re
|
23 |
+
import warnings
|
24 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
25 |
+
|
26 |
+
from packaging import version
|
27 |
+
|
28 |
+
from . import __version__
|
29 |
+
from .dynamic_module_utils import custom_object_save
|
30 |
+
from .utils import (
|
31 |
+
CONFIG_NAME,
|
32 |
+
PushToHubMixin,
|
33 |
+
add_model_info_to_auto_map,
|
34 |
+
cached_file,
|
35 |
+
copy_func,
|
36 |
+
download_url,
|
37 |
+
extract_commit_hash,
|
38 |
+
is_remote_url,
|
39 |
+
is_torch_available,
|
40 |
+
logging,
|
41 |
+
)
|
42 |
+
|
43 |
+
|
44 |
+
logger = logging.get_logger(__name__)
|
45 |
+
|
46 |
+
_re_configuration_file = re.compile(r"config\.(.*)\.json")
|
47 |
+
|
48 |
+
|
49 |
+
class PretrainedConfig(PushToHubMixin):
|
50 |
+
# no-format
|
51 |
+
r"""
|
52 |
+
Base class for all configuration classes. Handles a few parameters common to all models' configurations as well as
|
53 |
+
methods for loading/downloading/saving configurations.
|
54 |
+
|
55 |
+
<Tip>
|
56 |
+
|
57 |
+
A configuration file can be loaded and saved to disk. Loading the configuration file and using this file to
|
58 |
+
initialize a model does **not** load the model weights. It only affects the model's configuration.
|
59 |
+
|
60 |
+
</Tip>
|
61 |
+
|
62 |
+
Class attributes (overridden by derived classes):
|
63 |
+
|
64 |
+
- **model_type** (`str`) -- An identifier for the model type, serialized into the JSON file, and used to recreate
|
65 |
+
the correct object in [`~transformers.AutoConfig`].
|
66 |
+
- **is_composition** (`bool`) -- Whether the config class is composed of multiple sub-configs. In this case the
|
67 |
+
config has to be initialized from two or more configs of type [`~transformers.PretrainedConfig`] like:
|
68 |
+
[`~transformers.EncoderDecoderConfig`] or [`~RagConfig`].
|
69 |
+
- **keys_to_ignore_at_inference** (`List[str]`) -- A list of keys to ignore by default when looking at dictionary
|
70 |
+
outputs of the model during inference.
|
71 |
+
- **attribute_map** (`Dict[str, str]`) -- A dict that maps model specific attribute names to the standardized
|
72 |
+
naming of attributes.
|
73 |
+
|
74 |
+
Common attributes (present in all subclasses):
|
75 |
+
|
76 |
+
- **vocab_size** (`int`) -- The number of tokens in the vocabulary, which is also the first dimension of the
|
77 |
+
embeddings matrix (this attribute may be missing for models that don't have a text modality like ViT).
|
78 |
+
- **hidden_size** (`int`) -- The hidden size of the model.
|
79 |
+
- **num_attention_heads** (`int`) -- The number of attention heads used in the multi-head attention layers of the
|
80 |
+
model.
|
81 |
+
- **num_hidden_layers** (`int`) -- The number of blocks in the model.
|
82 |
+
|
83 |
+
Arg:
|
84 |
+
name_or_path (`str`, *optional*, defaults to `""`):
|
85 |
+
Store the string that was passed to [`PreTrainedModel.from_pretrained`] or
|
86 |
+
[`TFPreTrainedModel.from_pretrained`] as `pretrained_model_name_or_path` if the configuration was created
|
87 |
+
with such a method.
|
88 |
+
output_hidden_states (`bool`, *optional*, defaults to `False`):
|
89 |
+
Whether or not the model should return all hidden-states.
|
90 |
+
output_attentions (`bool`, *optional*, defaults to `False`):
|
91 |
+
Whether or not the model should returns all attentions.
|
92 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
93 |
+
Whether or not the model should return a [`~transformers.utils.ModelOutput`] instead of a plain tuple.
|
94 |
+
is_encoder_decoder (`bool`, *optional*, defaults to `False`):
|
95 |
+
Whether the model is used as an encoder/decoder or not.
|
96 |
+
is_decoder (`bool`, *optional*, defaults to `False`):
|
97 |
+
Whether the model is used as decoder or not (in which case it's used as an encoder).
|
98 |
+
cross_attention_hidden_size** (`bool`, *optional*):
|
99 |
+
The hidden size of the cross-attention layer in case the model is used as a decoder in an encoder-decoder
|
100 |
+
setting and the cross-attention hidden dimension differs from `self.config.hidden_size`.
|
101 |
+
add_cross_attention (`bool`, *optional*, defaults to `False`):
|
102 |
+
Whether cross-attention layers should be added to the model. Note, this option is only relevant for models
|
103 |
+
that can be used as decoder models within the [`EncoderDecoderModel`] class, which consists of all models
|
104 |
+
in `AUTO_MODELS_FOR_CAUSAL_LM`.
|
105 |
+
tie_encoder_decoder (`bool`, *optional*, defaults to `False`):
|
106 |
+
Whether all encoder weights should be tied to their equivalent decoder weights. This requires the encoder
|
107 |
+
and decoder model to have the exact same parameter names.
|
108 |
+
prune_heads (`Dict[int, List[int]]`, *optional*, defaults to `{}`):
|
109 |
+
Pruned heads of the model. The keys are the selected layer indices and the associated values, the list of
|
110 |
+
heads to prune in said layer.
|
111 |
+
|
112 |
+
For instance `{1: [0, 2], 2: [2, 3]}` will prune heads 0 and 2 on layer 1 and heads 2 and 3 on layer 2.
|
113 |
+
chunk_size_feed_forward (`int`, *optional*, defaults to `0`):
|
114 |
+
The chunk size of all feed forward layers in the residual attention blocks. A chunk size of `0` means that
|
115 |
+
the feed forward layer is not chunked. A chunk size of n means that the feed forward layer processes `n` <
|
116 |
+
sequence_length embeddings at a time. For more information on feed forward chunking, see [How does Feed
|
117 |
+
Forward Chunking work?](../glossary.html#feed-forward-chunking).
|
118 |
+
|
119 |
+
> Parameters for sequence generation
|
120 |
+
|
121 |
+
max_length (`int`, *optional*, defaults to 20):
|
122 |
+
Maximum length that will be used by default in the `generate` method of the model.
|
123 |
+
min_length (`int`, *optional*, defaults to 0):
|
124 |
+
Minimum length that will be used by default in the `generate` method of the model.
|
125 |
+
do_sample (`bool`, *optional*, defaults to `False`):
|
126 |
+
Flag that will be used by default in the `generate` method of the model. Whether or not to use sampling ;
|
127 |
+
use greedy decoding otherwise.
|
128 |
+
early_stopping (`bool`, *optional*, defaults to `False`):
|
129 |
+
Flag that will be used by default in the `generate` method of the model. Whether to stop the beam search
|
130 |
+
when at least `num_beams` sentences are finished per batch or not.
|
131 |
+
num_beams (`int`, *optional*, defaults to 1):
|
132 |
+
Number of beams for beam search that will be used by default in the `generate` method of the model. 1 means
|
133 |
+
no beam search.
|
134 |
+
num_beam_groups (`int`, *optional*, defaults to 1):
|
135 |
+
Number of groups to divide `num_beams` into in order to ensure diversity among different groups of beams
|
136 |
+
that will be used by default in the `generate` method of the model. 1 means no group beam search.
|
137 |
+
diversity_penalty (`float`, *optional*, defaults to 0.0):
|
138 |
+
Value to control diversity for group beam search. that will be used by default in the `generate` method of
|
139 |
+
the model. 0 means no diversity penalty. The higher the penalty, the more diverse are the outputs.
|
140 |
+
temperature (`float`, *optional*, defaults to 1.0):
|
141 |
+
The value used to module the next token probabilities that will be used by default in the `generate` method
|
142 |
+
of the model. Must be strictly positive.
|
143 |
+
top_k (`int`, *optional*, defaults to 50):
|
144 |
+
Number of highest probability vocabulary tokens to keep for top-k-filtering that will be used by default in
|
145 |
+
the `generate` method of the model.
|
146 |
+
top_p (`float`, *optional*, defaults to 1):
|
147 |
+
Value that will be used by default in the `generate` method of the model for `top_p`. If set to float < 1,
|
148 |
+
only the most probable tokens with probabilities that add up to `top_p` or higher are kept for generation.
|
149 |
+
typical_p (`float`, *optional*, defaults to 1):
|
150 |
+
Local typicality measures how similar the conditional probability of predicting a target token next is to
|
151 |
+
the expected conditional probability of predicting a random token next, given the partial text already
|
152 |
+
generated. If set to float < 1, the smallest set of the most locally typical tokens with probabilities that
|
153 |
+
add up to `typical_p` or higher are kept for generation. See [this
|
154 |
+
paper](https://arxiv.org/pdf/2202.00666.pdf) for more details.
|
155 |
+
repetition_penalty (`float`, *optional*, defaults to 1):
|
156 |
+
Parameter for repetition penalty that will be used by default in the `generate` method of the model. 1.0
|
157 |
+
means no penalty.
|
158 |
+
length_penalty (`float`, *optional*, defaults to 1):
|
159 |
+
Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent to
|
160 |
+
the sequence length, which in turn is used to divide the score of the sequence. Since the score is the log
|
161 |
+
likelihood of the sequence (i.e. negative), `length_penalty` > 0.0 promotes longer sequences, while
|
162 |
+
`length_penalty` < 0.0 encourages shorter sequences.
|
163 |
+
no_repeat_ngram_size (`int`, *optional*, defaults to 0) -- Value that will be used by default in the
|
164 |
+
`generate` method of the model for `no_repeat_ngram_size`. If set to int > 0, all ngrams of that size can
|
165 |
+
only occur once.
|
166 |
+
encoder_no_repeat_ngram_size (`int`, *optional*, defaults to 0) -- Value that will be used by
|
167 |
+
default in the `generate` method of the model for `encoder_no_repeat_ngram_size`. If set to int > 0, all
|
168 |
+
ngrams of that size that occur in the `encoder_input_ids` cannot occur in the `decoder_input_ids`.
|
169 |
+
bad_words_ids (`List[int]`, *optional*):
|
170 |
+
List of token ids that are not allowed to be generated that will be used by default in the `generate`
|
171 |
+
method of the model. In order to get the tokens of the words that should not appear in the generated text,
|
172 |
+
use `tokenizer.encode(bad_word, add_prefix_space=True)`.
|
173 |
+
num_return_sequences (`int`, *optional*, defaults to 1):
|
174 |
+
Number of independently computed returned sequences for each element in the batch that will be used by
|
175 |
+
default in the `generate` method of the model.
|
176 |
+
output_scores (`bool`, *optional*, defaults to `False`):
|
177 |
+
Whether the model should return the logits when used for generation.
|
178 |
+
return_dict_in_generate (`bool`, *optional*, defaults to `False`):
|
179 |
+
Whether the model should return a [`~transformers.utils.ModelOutput`] instead of a `torch.LongTensor`.
|
180 |
+
forced_bos_token_id (`int`, *optional*):
|
181 |
+
The id of the token to force as the first generated token after the `decoder_start_token_id`. Useful for
|
182 |
+
multilingual models like [mBART](../model_doc/mbart) where the first generated token needs to be the target
|
183 |
+
language token.
|
184 |
+
forced_eos_token_id (`int`, *optional*):
|
185 |
+
The id of the token to force as the last generated token when `max_length` is reached.
|
186 |
+
remove_invalid_values (`bool`, *optional*):
|
187 |
+
Whether to remove possible _nan_ and _inf_ outputs of the model to prevent the generation method to crash.
|
188 |
+
Note that using `remove_invalid_values` can slow down generation.
|
189 |
+
|
190 |
+
> Parameters for fine-tuning tasks
|
191 |
+
|
192 |
+
architectures (`List[str]`, *optional*):
|
193 |
+
Model architectures that can be used with the model pretrained weights.
|
194 |
+
finetuning_task (`str`, *optional*):
|
195 |
+
Name of the task used to fine-tune the model. This can be used when converting from an original (TensorFlow
|
196 |
+
or PyTorch) checkpoint.
|
197 |
+
id2label (`Dict[int, str]`, *optional*):
|
198 |
+
A map from index (for instance prediction index, or target index) to label.
|
199 |
+
label2id (`Dict[str, int]`, *optional*): A map from label to index for the model.
|
200 |
+
num_labels (`int`, *optional*):
|
201 |
+
Number of labels to use in the last layer added to the model, typically for a classification task.
|
202 |
+
task_specific_params (`Dict[str, Any]`, *optional*):
|
203 |
+
Additional keyword arguments to store for the current task.
|
204 |
+
problem_type (`str`, *optional*):
|
205 |
+
Problem type for `XxxForSequenceClassification` models. Can be one of `"regression"`,
|
206 |
+
`"single_label_classification"` or `"multi_label_classification"`.
|
207 |
+
|
208 |
+
> Parameters linked to the tokenizer
|
209 |
+
|
210 |
+
tokenizer_class (`str`, *optional*):
|
211 |
+
The name of the associated tokenizer class to use (if none is set, will use the tokenizer associated to the
|
212 |
+
model by default).
|
213 |
+
prefix (`str`, *optional*):
|
214 |
+
A specific prompt that should be added at the beginning of each text before calling the model.
|
215 |
+
bos_token_id (`int`, *optional*): The id of the _beginning-of-stream_ token.
|
216 |
+
pad_token_id (`int`, *optional*): The id of the _padding_ token.
|
217 |
+
eos_token_id (`int`, *optional*): The id of the _end-of-stream_ token.
|
218 |
+
decoder_start_token_id (`int`, *optional*):
|
219 |
+
If an encoder-decoder model starts decoding with a different token than _bos_, the id of that token.
|
220 |
+
sep_token_id (`int`, *optional*): The id of the _separation_ token.
|
221 |
+
|
222 |
+
> PyTorch specific parameters
|
223 |
+
|
224 |
+
torchscript (`bool`, *optional*, defaults to `False`):
|
225 |
+
Whether or not the model should be used with Torchscript.
|
226 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `True`):
|
227 |
+
Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the
|
228 |
+
model has a output word embedding layer.
|
229 |
+
torch_dtype (`str`, *optional*):
|
230 |
+
The `dtype` of the weights. This attribute can be used to initialize the model to a non-default `dtype`
|
231 |
+
(which is normally `float32`) and thus allow for optimal storage allocation. For example, if the saved
|
232 |
+
model is `float16`, ideally we want to load it back using the minimal amount of memory needed to load
|
233 |
+
`float16` weights. Since the config object is stored in plain text, this attribute contains just the
|
234 |
+
floating type string without the `torch.` prefix. For example, for `torch.float16` ``torch_dtype` is the
|
235 |
+
`"float16"` string.
|
236 |
+
|
237 |
+
This attribute is currently not being used during model loading time, but this may change in the future
|
238 |
+
versions. But we can already start preparing for the future by saving the dtype with save_pretrained.
|
239 |
+
|
240 |
+
> TensorFlow specific parameters
|
241 |
+
|
242 |
+
use_bfloat16 (`bool`, *optional*, defaults to `False`):
|
243 |
+
Whether or not the model should use BFloat16 scalars (only used by some TensorFlow models).
|
244 |
+
tf_legacy_loss (`bool`, *optional*, defaults to `False`):
|
245 |
+
Whether the model should use legacy TensorFlow losses. Legacy losses have variable output shapes and may
|
246 |
+
not be XLA-compatible. This option is here for backward compatibility and will be removed in Transformers
|
247 |
+
v5.
|
248 |
+
"""
|
249 |
+
|
250 |
+
model_type: str = ""
|
251 |
+
is_composition: bool = False
|
252 |
+
attribute_map: Dict[str, str] = {}
|
253 |
+
_auto_class: Optional[str] = None
|
254 |
+
|
255 |
+
def __setattr__(self, key, value):
|
256 |
+
if key in super().__getattribute__("attribute_map"):
|
257 |
+
key = super().__getattribute__("attribute_map")[key]
|
258 |
+
super().__setattr__(key, value)
|
259 |
+
|
260 |
+
def __getattribute__(self, key):
|
261 |
+
if key != "attribute_map" and key in super().__getattribute__("attribute_map"):
|
262 |
+
key = super().__getattribute__("attribute_map")[key]
|
263 |
+
return super().__getattribute__(key)
|
264 |
+
|
265 |
+
def __init__(self, **kwargs):
|
266 |
+
# Attributes with defaults
|
267 |
+
self.return_dict = kwargs.pop("return_dict", True)
|
268 |
+
self.output_hidden_states = kwargs.pop("output_hidden_states", False)
|
269 |
+
self.output_attentions = kwargs.pop("output_attentions", False)
|
270 |
+
self.torchscript = kwargs.pop("torchscript", False) # Only used by PyTorch models
|
271 |
+
self.torch_dtype = kwargs.pop("torch_dtype", None) # Only used by PyTorch models
|
272 |
+
self.use_bfloat16 = kwargs.pop("use_bfloat16", False)
|
273 |
+
self.tf_legacy_loss = kwargs.pop("tf_legacy_loss", False) # Only used by TensorFlow models
|
274 |
+
self.pruned_heads = kwargs.pop("pruned_heads", {})
|
275 |
+
self.tie_word_embeddings = kwargs.pop(
|
276 |
+
"tie_word_embeddings", True
|
277 |
+
) # Whether input and output word embeddings should be tied for all MLM, LM and Seq2Seq models.
|
278 |
+
self.chunk_size_feed_forward = kwargs.pop("chunk_size_feed_forward", 0)
|
279 |
+
|
280 |
+
# Is decoder is used in encoder-decoder models to differentiate encoder from decoder
|
281 |
+
self.is_encoder_decoder = kwargs.pop("is_encoder_decoder", False)
|
282 |
+
self.is_decoder = kwargs.pop("is_decoder", False)
|
283 |
+
self.cross_attention_hidden_size = kwargs.pop("cross_attention_hidden_size", None)
|
284 |
+
self.add_cross_attention = kwargs.pop("add_cross_attention", False)
|
285 |
+
self.tie_encoder_decoder = kwargs.pop("tie_encoder_decoder", False)
|
286 |
+
|
287 |
+
# Retrocompatibility: Parameters for sequence generation. While we will keep the ability to load these
|
288 |
+
# parameters, saving them will be deprecated. In a distant future, we won't need to load them.
|
289 |
+
for parameter_name, default_value in self._get_generation_defaults().items():
|
290 |
+
setattr(self, parameter_name, kwargs.pop(parameter_name, default_value))
|
291 |
+
|
292 |
+
# Fine-tuning task arguments
|
293 |
+
self.architectures = kwargs.pop("architectures", None)
|
294 |
+
self.finetuning_task = kwargs.pop("finetuning_task", None)
|
295 |
+
self.id2label = kwargs.pop("id2label", None)
|
296 |
+
self.label2id = kwargs.pop("label2id", None)
|
297 |
+
if self.label2id is not None and not isinstance(self.label2id, dict):
|
298 |
+
raise ValueError("Argument label2id should be a dictionary.")
|
299 |
+
if self.id2label is not None:
|
300 |
+
if not isinstance(self.id2label, dict):
|
301 |
+
raise ValueError("Argument id2label should be a dictionary.")
|
302 |
+
num_labels = kwargs.pop("num_labels", None)
|
303 |
+
if num_labels is not None and len(self.id2label) != num_labels:
|
304 |
+
logger.warning(
|
305 |
+
f"You passed along `num_labels={num_labels}` with an incompatible id to label map: "
|
306 |
+
f"{self.id2label}. The number of labels wil be overwritten to {self.num_labels}."
|
307 |
+
)
|
308 |
+
self.id2label = {int(key): value for key, value in self.id2label.items()}
|
309 |
+
# Keys are always strings in JSON so convert ids to int here.
|
310 |
+
else:
|
311 |
+
self.num_labels = kwargs.pop("num_labels", 2)
|
312 |
+
|
313 |
+
if self.torch_dtype is not None and isinstance(self.torch_dtype, str):
|
314 |
+
# we will start using self.torch_dtype in v5, but to be consistent with
|
315 |
+
# from_pretrained's torch_dtype arg convert it to an actual torch.dtype object
|
316 |
+
if is_torch_available():
|
317 |
+
import torch
|
318 |
+
|
319 |
+
self.torch_dtype = getattr(torch, self.torch_dtype)
|
320 |
+
|
321 |
+
# Tokenizer arguments TODO: eventually tokenizer and models should share the same config
|
322 |
+
self.tokenizer_class = kwargs.pop("tokenizer_class", None)
|
323 |
+
self.prefix = kwargs.pop("prefix", None)
|
324 |
+
self.bos_token_id = kwargs.pop("bos_token_id", None)
|
325 |
+
self.pad_token_id = kwargs.pop("pad_token_id", None)
|
326 |
+
self.eos_token_id = kwargs.pop("eos_token_id", None)
|
327 |
+
self.sep_token_id = kwargs.pop("sep_token_id", None)
|
328 |
+
|
329 |
+
self.decoder_start_token_id = kwargs.pop("decoder_start_token_id", None)
|
330 |
+
|
331 |
+
# task specific arguments
|
332 |
+
self.task_specific_params = kwargs.pop("task_specific_params", None)
|
333 |
+
|
334 |
+
# regression / multi-label classification
|
335 |
+
self.problem_type = kwargs.pop("problem_type", None)
|
336 |
+
allowed_problem_types = ("regression", "single_label_classification", "multi_label_classification")
|
337 |
+
if self.problem_type is not None and self.problem_type not in allowed_problem_types:
|
338 |
+
raise ValueError(
|
339 |
+
f"The config parameter `problem_type` was not understood: received {self.problem_type} "
|
340 |
+
"but only 'regression', 'single_label_classification' and 'multi_label_classification' are valid."
|
341 |
+
)
|
342 |
+
|
343 |
+
# TPU arguments
|
344 |
+
if kwargs.pop("xla_device", None) is not None:
|
345 |
+
logger.warning(
|
346 |
+
"The `xla_device` argument has been deprecated in v4.4.0 of Transformers. It is ignored and you can "
|
347 |
+
"safely remove it from your `config.json` file."
|
348 |
+
)
|
349 |
+
|
350 |
+
# Name or path to the pretrained checkpoint
|
351 |
+
self._name_or_path = str(kwargs.pop("name_or_path", ""))
|
352 |
+
# Config hash
|
353 |
+
self._commit_hash = kwargs.pop("_commit_hash", None)
|
354 |
+
|
355 |
+
# Attention implementation to use, if relevant.
|
356 |
+
self._attn_implementation_internal = kwargs.pop("attn_implementation", None)
|
357 |
+
|
358 |
+
# Drop the transformers version info
|
359 |
+
self.transformers_version = kwargs.pop("transformers_version", None)
|
360 |
+
|
361 |
+
# Deal with gradient checkpointing
|
362 |
+
if kwargs.get("gradient_checkpointing", False):
|
363 |
+
warnings.warn(
|
364 |
+
"Passing `gradient_checkpointing` to a config initialization is deprecated and will be removed in v5 "
|
365 |
+
"Transformers. Using `model.gradient_checkpointing_enable()` instead, or if you are using the "
|
366 |
+
"`Trainer` API, pass `gradient_checkpointing=True` in your `TrainingArguments`."
|
367 |
+
)
|
368 |
+
|
369 |
+
# Additional attributes without default values
|
370 |
+
for key, value in kwargs.items():
|
371 |
+
try:
|
372 |
+
setattr(self, key, value)
|
373 |
+
except AttributeError as err:
|
374 |
+
logger.error(f"Can't set {key} with value {value} for {self}")
|
375 |
+
raise err
|
376 |
+
|
377 |
+
@property
|
378 |
+
def name_or_path(self) -> str:
|
379 |
+
return getattr(self, "_name_or_path", None)
|
380 |
+
|
381 |
+
@name_or_path.setter
|
382 |
+
def name_or_path(self, value):
|
383 |
+
self._name_or_path = str(value) # Make sure that name_or_path is a string (for JSON encoding)
|
384 |
+
|
385 |
+
@property
|
386 |
+
def use_return_dict(self) -> bool:
|
387 |
+
"""
|
388 |
+
`bool`: Whether or not return [`~utils.ModelOutput`] instead of tuples.
|
389 |
+
"""
|
390 |
+
# If torchscript is set, force `return_dict=False` to avoid jit errors
|
391 |
+
return self.return_dict and not self.torchscript
|
392 |
+
|
393 |
+
@property
|
394 |
+
def num_labels(self) -> int:
|
395 |
+
"""
|
396 |
+
`int`: The number of labels for classification models.
|
397 |
+
"""
|
398 |
+
return len(self.id2label)
|
399 |
+
|
400 |
+
@num_labels.setter
|
401 |
+
def num_labels(self, num_labels: int):
|
402 |
+
if not hasattr(self, "id2label") or self.id2label is None or len(self.id2label) != num_labels:
|
403 |
+
self.id2label = {i: f"LABEL_{i}" for i in range(num_labels)}
|
404 |
+
self.label2id = dict(zip(self.id2label.values(), self.id2label.keys()))
|
405 |
+
|
406 |
+
@property
|
407 |
+
def _attn_implementation(self):
|
408 |
+
# This property is made private for now (as it cannot be changed and a PreTrainedModel.use_attn_implementation method needs to be implemented.)
|
409 |
+
if hasattr(self, "_attn_implementation_internal"):
|
410 |
+
if self._attn_implementation_internal is None:
|
411 |
+
# `config.attn_implementation` should never be None, for backward compatibility.
|
412 |
+
return "eager"
|
413 |
+
else:
|
414 |
+
return self._attn_implementation_internal
|
415 |
+
else:
|
416 |
+
return "eager"
|
417 |
+
|
418 |
+
@_attn_implementation.setter
|
419 |
+
def _attn_implementation(self, value):
|
420 |
+
self._attn_implementation_internal = value
|
421 |
+
|
422 |
+
def save_pretrained(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs):
|
423 |
+
"""
|
424 |
+
Save a configuration object to the directory `save_directory`, so that it can be re-loaded using the
|
425 |
+
[`~PretrainedConfig.from_pretrained`] class method.
|
426 |
+
|
427 |
+
Args:
|
428 |
+
save_directory (`str` or `os.PathLike`):
|
429 |
+
Directory where the configuration JSON file will be saved (will be created if it does not exist).
|
430 |
+
push_to_hub (`bool`, *optional*, defaults to `False`):
|
431 |
+
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
|
432 |
+
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
|
433 |
+
namespace).
|
434 |
+
kwargs (`Dict[str, Any]`, *optional*):
|
435 |
+
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
|
436 |
+
"""
|
437 |
+
self._set_token_in_kwargs(kwargs)
|
438 |
+
|
439 |
+
if os.path.isfile(save_directory):
|
440 |
+
raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")
|
441 |
+
|
442 |
+
non_default_generation_parameters = {}
|
443 |
+
for parameter_name, default_value in self._get_generation_defaults().items():
|
444 |
+
if hasattr(self, parameter_name) and getattr(self, parameter_name) != default_value:
|
445 |
+
non_default_generation_parameters[parameter_name] = getattr(self, parameter_name)
|
446 |
+
if len(non_default_generation_parameters) > 0:
|
447 |
+
logger.warning(
|
448 |
+
"Some non-default generation parameters are set in the model config. These should go into a "
|
449 |
+
"GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) "
|
450 |
+
"instead. This warning will be raised to an exception in v4.41.\n"
|
451 |
+
f"Non-default generation parameters: {str(non_default_generation_parameters)}"
|
452 |
+
)
|
453 |
+
|
454 |
+
os.makedirs(save_directory, exist_ok=True)
|
455 |
+
|
456 |
+
if push_to_hub:
|
457 |
+
commit_message = kwargs.pop("commit_message", None)
|
458 |
+
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
|
459 |
+
repo_id = self._create_repo(repo_id, **kwargs)
|
460 |
+
files_timestamps = self._get_files_timestamps(save_directory)
|
461 |
+
|
462 |
+
# If we have a custom config, we copy the file defining it in the folder and set the attributes so it can be
|
463 |
+
# loaded from the Hub.
|
464 |
+
if self._auto_class is not None:
|
465 |
+
custom_object_save(self, save_directory, config=self)
|
466 |
+
|
467 |
+
# If we save using the predefined names, we can load using `from_pretrained`
|
468 |
+
output_config_file = os.path.join(save_directory, CONFIG_NAME)
|
469 |
+
|
470 |
+
self.to_json_file(output_config_file, use_diff=True)
|
471 |
+
logger.info(f"Configuration saved in {output_config_file}")
|
472 |
+
|
473 |
+
if push_to_hub:
|
474 |
+
self._upload_modified_files(
|
475 |
+
save_directory,
|
476 |
+
repo_id,
|
477 |
+
files_timestamps,
|
478 |
+
commit_message=commit_message,
|
479 |
+
token=kwargs.get("token"),
|
480 |
+
)
|
481 |
+
|
482 |
+
@staticmethod
|
483 |
+
def _set_token_in_kwargs(kwargs, token=None):
|
484 |
+
"""Temporary method to deal with `token` and `use_auth_token`.
|
485 |
+
|
486 |
+
This method is to avoid apply the same changes in all model config classes that overwrite `from_pretrained`.
|
487 |
+
|
488 |
+
Need to clean up `use_auth_token` in a follow PR.
|
489 |
+
"""
|
490 |
+
# Some model config classes like CLIP define their own `from_pretrained` without the new argument `token` yet.
|
491 |
+
if token is None:
|
492 |
+
token = kwargs.pop("token", None)
|
493 |
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
494 |
+
|
495 |
+
if use_auth_token is not None:
|
496 |
+
warnings.warn(
|
497 |
+
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
|
498 |
+
FutureWarning,
|
499 |
+
)
|
500 |
+
if token is not None:
|
501 |
+
raise ValueError(
|
502 |
+
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
|
503 |
+
)
|
504 |
+
token = use_auth_token
|
505 |
+
|
506 |
+
if token is not None:
|
507 |
+
kwargs["token"] = token
|
508 |
+
|
509 |
+
@classmethod
|
510 |
+
def from_pretrained(
|
511 |
+
cls,
|
512 |
+
pretrained_model_name_or_path: Union[str, os.PathLike],
|
513 |
+
cache_dir: Optional[Union[str, os.PathLike]] = None,
|
514 |
+
force_download: bool = False,
|
515 |
+
local_files_only: bool = False,
|
516 |
+
token: Optional[Union[str, bool]] = None,
|
517 |
+
revision: str = "main",
|
518 |
+
**kwargs,
|
519 |
+
) -> "PretrainedConfig":
|
520 |
+
r"""
|
521 |
+
Instantiate a [`PretrainedConfig`] (or a derived class) from a pretrained model configuration.
|
522 |
+
|
523 |
+
Args:
|
524 |
+
pretrained_model_name_or_path (`str` or `os.PathLike`):
|
525 |
+
This can be either:
|
526 |
+
|
527 |
+
- a string, the *model id* of a pretrained model configuration hosted inside a model repo on
|
528 |
+
huggingface.co.
|
529 |
+
- a path to a *directory* containing a configuration file saved using the
|
530 |
+
[`~PretrainedConfig.save_pretrained`] method, e.g., `./my_model_directory/`.
|
531 |
+
- a path or url to a saved configuration JSON *file*, e.g., `./my_model_directory/configuration.json`.
|
532 |
+
cache_dir (`str` or `os.PathLike`, *optional*):
|
533 |
+
Path to a directory in which a downloaded pretrained model configuration should be cached if the
|
534 |
+
standard cache should not be used.
|
535 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
536 |
+
Whether or not to force to (re-)download the configuration files and override the cached versions if
|
537 |
+
they exist.
|
538 |
+
resume_download (`bool`, *optional*, defaults to `False`):
|
539 |
+
Whether or not to delete incompletely received file. Attempts to resume the download if such a file
|
540 |
+
exists.
|
541 |
+
proxies (`Dict[str, str]`, *optional*):
|
542 |
+
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
|
543 |
+
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
|
544 |
+
token (`str` or `bool`, *optional*):
|
545 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
|
546 |
+
the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
|
547 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
548 |
+
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
|
549 |
+
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
|
550 |
+
identifier allowed by git.
|
551 |
+
|
552 |
+
<Tip>
|
553 |
+
|
554 |
+
To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>".
|
555 |
+
|
556 |
+
</Tip>
|
557 |
+
|
558 |
+
return_unused_kwargs (`bool`, *optional*, defaults to `False`):
|
559 |
+
If `False`, then this function returns just the final configuration object.
|
560 |
+
|
561 |
+
If `True`, then this functions returns a `Tuple(config, unused_kwargs)` where *unused_kwargs* is a
|
562 |
+
dictionary consisting of the key/value pairs whose keys are not configuration attributes: i.e., the
|
563 |
+
part of `kwargs` which has not been used to update `config` and is otherwise ignored.
|
564 |
+
subfolder (`str`, *optional*, defaults to `""`):
|
565 |
+
In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
|
566 |
+
specify the folder name here.
|
567 |
+
kwargs (`Dict[str, Any]`, *optional*):
|
568 |
+
The values in kwargs of any keys which are configuration attributes will be used to override the loaded
|
569 |
+
values. Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled
|
570 |
+
by the `return_unused_kwargs` keyword parameter.
|
571 |
+
|
572 |
+
Returns:
|
573 |
+
[`PretrainedConfig`]: The configuration object instantiated from this pretrained model.
|
574 |
+
|
575 |
+
Examples:
|
576 |
+
|
577 |
+
```python
|
578 |
+
# We can't instantiate directly the base class *PretrainedConfig* so let's show the examples on a
|
579 |
+
# derived class: BertConfig
|
580 |
+
config = BertConfig.from_pretrained(
|
581 |
+
"google-bert/bert-base-uncased"
|
582 |
+
) # Download configuration from huggingface.co and cache.
|
583 |
+
config = BertConfig.from_pretrained(
|
584 |
+
"./test/saved_model/"
|
585 |
+
) # E.g. config (or model) was saved using *save_pretrained('./test/saved_model/')*
|
586 |
+
config = BertConfig.from_pretrained("./test/saved_model/my_configuration.json")
|
587 |
+
config = BertConfig.from_pretrained("google-bert/bert-base-uncased", output_attentions=True, foo=False)
|
588 |
+
assert config.output_attentions == True
|
589 |
+
config, unused_kwargs = BertConfig.from_pretrained(
|
590 |
+
"google-bert/bert-base-uncased", output_attentions=True, foo=False, return_unused_kwargs=True
|
591 |
+
)
|
592 |
+
assert config.output_attentions == True
|
593 |
+
assert unused_kwargs == {"foo": False}
|
594 |
+
```"""
|
595 |
+
kwargs["cache_dir"] = cache_dir
|
596 |
+
kwargs["force_download"] = force_download
|
597 |
+
kwargs["local_files_only"] = local_files_only
|
598 |
+
kwargs["revision"] = revision
|
599 |
+
|
600 |
+
cls._set_token_in_kwargs(kwargs, token)
|
601 |
+
|
602 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
603 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
604 |
+
logger.warning(
|
605 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
606 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
607 |
+
)
|
608 |
+
|
609 |
+
return cls.from_dict(config_dict, **kwargs)
|
610 |
+
|
611 |
+
@classmethod
|
612 |
+
def get_config_dict(
|
613 |
+
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
|
614 |
+
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
|
615 |
+
"""
|
616 |
+
From a `pretrained_model_name_or_path`, resolve to a dictionary of parameters, to be used for instantiating a
|
617 |
+
[`PretrainedConfig`] using `from_dict`.
|
618 |
+
|
619 |
+
Parameters:
|
620 |
+
pretrained_model_name_or_path (`str` or `os.PathLike`):
|
621 |
+
The identifier of the pre-trained checkpoint from which we want the dictionary of parameters.
|
622 |
+
|
623 |
+
Returns:
|
624 |
+
`Tuple[Dict, Dict]`: The dictionary(ies) that will be used to instantiate the configuration object.
|
625 |
+
|
626 |
+
"""
|
627 |
+
cls._set_token_in_kwargs(kwargs)
|
628 |
+
|
629 |
+
original_kwargs = copy.deepcopy(kwargs)
|
630 |
+
# Get config dict associated with the base config file
|
631 |
+
config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs)
|
632 |
+
if "_commit_hash" in config_dict:
|
633 |
+
original_kwargs["_commit_hash"] = config_dict["_commit_hash"]
|
634 |
+
|
635 |
+
# That config file may point us toward another config file to use.
|
636 |
+
if "configuration_files" in config_dict:
|
637 |
+
configuration_file = get_configuration_file(config_dict["configuration_files"])
|
638 |
+
config_dict, kwargs = cls._get_config_dict(
|
639 |
+
pretrained_model_name_or_path, _configuration_file=configuration_file, **original_kwargs
|
640 |
+
)
|
641 |
+
|
642 |
+
return config_dict, kwargs
|
643 |
+
|
644 |
+
@classmethod
|
645 |
+
def _get_config_dict(
|
646 |
+
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
|
647 |
+
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
|
648 |
+
cache_dir = kwargs.pop("cache_dir", None)
|
649 |
+
force_download = kwargs.pop("force_download", False)
|
650 |
+
resume_download = kwargs.pop("resume_download", False)
|
651 |
+
proxies = kwargs.pop("proxies", None)
|
652 |
+
token = kwargs.pop("token", None)
|
653 |
+
local_files_only = kwargs.pop("local_files_only", False)
|
654 |
+
revision = kwargs.pop("revision", None)
|
655 |
+
trust_remote_code = kwargs.pop("trust_remote_code", None)
|
656 |
+
subfolder = kwargs.pop("subfolder", "")
|
657 |
+
from_pipeline = kwargs.pop("_from_pipeline", None)
|
658 |
+
from_auto_class = kwargs.pop("_from_auto", False)
|
659 |
+
commit_hash = kwargs.pop("_commit_hash", None)
|
660 |
+
|
661 |
+
if trust_remote_code is True:
|
662 |
+
logger.warning(
|
663 |
+
"The argument `trust_remote_code` is to be used with Auto classes. It has no effect here and is"
|
664 |
+
" ignored."
|
665 |
+
)
|
666 |
+
|
667 |
+
user_agent = {"file_type": "config", "from_auto_class": from_auto_class}
|
668 |
+
if from_pipeline is not None:
|
669 |
+
user_agent["using_pipeline"] = from_pipeline
|
670 |
+
|
671 |
+
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
|
672 |
+
|
673 |
+
is_local = os.path.isdir(pretrained_model_name_or_path)
|
674 |
+
if os.path.isfile(os.path.join(subfolder, pretrained_model_name_or_path)):
|
675 |
+
# Special case when pretrained_model_name_or_path is a local file
|
676 |
+
resolved_config_file = pretrained_model_name_or_path
|
677 |
+
is_local = True
|
678 |
+
elif is_remote_url(pretrained_model_name_or_path):
|
679 |
+
configuration_file = pretrained_model_name_or_path
|
680 |
+
resolved_config_file = download_url(pretrained_model_name_or_path)
|
681 |
+
else:
|
682 |
+
configuration_file = kwargs.pop("_configuration_file", CONFIG_NAME)
|
683 |
+
|
684 |
+
try:
|
685 |
+
# Load from local folder or from cache or download from model Hub and cache
|
686 |
+
resolved_config_file = cached_file(
|
687 |
+
pretrained_model_name_or_path,
|
688 |
+
configuration_file,
|
689 |
+
cache_dir=cache_dir,
|
690 |
+
force_download=force_download,
|
691 |
+
proxies=proxies,
|
692 |
+
resume_download=resume_download,
|
693 |
+
local_files_only=local_files_only,
|
694 |
+
token=token,
|
695 |
+
user_agent=user_agent,
|
696 |
+
revision=revision,
|
697 |
+
subfolder=subfolder,
|
698 |
+
_commit_hash=commit_hash,
|
699 |
+
)
|
700 |
+
commit_hash = extract_commit_hash(resolved_config_file, commit_hash)
|
701 |
+
except EnvironmentError:
|
702 |
+
# Raise any environment error raise by `cached_file`. It will have a helpful error message adapted to
|
703 |
+
# the original exception.
|
704 |
+
raise
|
705 |
+
except Exception:
|
706 |
+
# For any other exception, we throw a generic error.
|
707 |
+
raise EnvironmentError(
|
708 |
+
f"Can't load the configuration of '{pretrained_model_name_or_path}'. If you were trying to load it"
|
709 |
+
" from 'https://huggingface.co/models', make sure you don't have a local directory with the same"
|
710 |
+
f" name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory"
|
711 |
+
f" containing a {configuration_file} file"
|
712 |
+
)
|
713 |
+
|
714 |
+
try:
|
715 |
+
# Load config dict
|
716 |
+
config_dict = cls._dict_from_json_file(resolved_config_file)
|
717 |
+
config_dict["_commit_hash"] = commit_hash
|
718 |
+
except (json.JSONDecodeError, UnicodeDecodeError):
|
719 |
+
raise EnvironmentError(
|
720 |
+
f"It looks like the config file at '{resolved_config_file}' is not a valid JSON file."
|
721 |
+
)
|
722 |
+
|
723 |
+
if is_local:
|
724 |
+
logger.info(f"loading configuration file {resolved_config_file}")
|
725 |
+
else:
|
726 |
+
logger.info(f"loading configuration file {configuration_file} from cache at {resolved_config_file}")
|
727 |
+
|
728 |
+
if "auto_map" in config_dict and not is_local:
|
729 |
+
config_dict["auto_map"] = add_model_info_to_auto_map(
|
730 |
+
config_dict["auto_map"], pretrained_model_name_or_path
|
731 |
+
)
|
732 |
+
return config_dict, kwargs
|
733 |
+
|
734 |
+
@classmethod
|
735 |
+
def from_dict(cls, config_dict: Dict[str, Any], **kwargs) -> "PretrainedConfig":
|
736 |
+
"""
|
737 |
+
Instantiates a [`PretrainedConfig`] from a Python dictionary of parameters.
|
738 |
+
|
739 |
+
Args:
|
740 |
+
config_dict (`Dict[str, Any]`):
|
741 |
+
Dictionary that will be used to instantiate the configuration object. Such a dictionary can be
|
742 |
+
retrieved from a pretrained checkpoint by leveraging the [`~PretrainedConfig.get_config_dict`] method.
|
743 |
+
kwargs (`Dict[str, Any]`):
|
744 |
+
Additional parameters from which to initialize the configuration object.
|
745 |
+
|
746 |
+
Returns:
|
747 |
+
[`PretrainedConfig`]: The configuration object instantiated from those parameters.
|
748 |
+
"""
|
749 |
+
return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
|
750 |
+
# Those arguments may be passed along for our internal telemetry.
|
751 |
+
# We remove them so they don't appear in `return_unused_kwargs`.
|
752 |
+
kwargs.pop("_from_auto", None)
|
753 |
+
kwargs.pop("_from_pipeline", None)
|
754 |
+
# The commit hash might have been updated in the `config_dict`, we don't want the kwargs to erase that update.
|
755 |
+
if "_commit_hash" in kwargs and "_commit_hash" in config_dict:
|
756 |
+
kwargs["_commit_hash"] = config_dict["_commit_hash"]
|
757 |
+
|
758 |
+
# We remove it from kwargs so that it does not appear in `return_unused_kwargs`.
|
759 |
+
config_dict["attn_implementation"] = kwargs.pop("attn_implementation", None)
|
760 |
+
|
761 |
+
config = cls(**config_dict)
|
762 |
+
|
763 |
+
if hasattr(config, "pruned_heads"):
|
764 |
+
config.pruned_heads = {int(key): value for key, value in config.pruned_heads.items()}
|
765 |
+
|
766 |
+
# Update config with kwargs if needed
|
767 |
+
if "num_labels" in kwargs and "id2label" in kwargs:
|
768 |
+
num_labels = kwargs["num_labels"]
|
769 |
+
id2label = kwargs["id2label"] if kwargs["id2label"] is not None else []
|
770 |
+
if len(id2label) != num_labels:
|
771 |
+
raise ValueError(
|
772 |
+
f"You passed along `num_labels={num_labels }` with an incompatible id to label map: "
|
773 |
+
f"{kwargs['id2label']}. Since those arguments are inconsistent with each other, you should remove "
|
774 |
+
"one of them."
|
775 |
+
)
|
776 |
+
to_remove = []
|
777 |
+
for key, value in kwargs.items():
|
778 |
+
if hasattr(config, key):
|
779 |
+
current_attr = getattr(config, key)
|
780 |
+
# To authorize passing a custom subconfig as kwarg in models that have nested configs.
|
781 |
+
if isinstance(current_attr, PretrainedConfig) and isinstance(value, dict):
|
782 |
+
value = current_attr.__class__(**value)
|
783 |
+
setattr(config, key, value)
|
784 |
+
if key != "torch_dtype":
|
785 |
+
to_remove.append(key)
|
786 |
+
for key in to_remove:
|
787 |
+
kwargs.pop(key, None)
|
788 |
+
|
789 |
+
logger.info(f"Model config {config}")
|
790 |
+
if return_unused_kwargs:
|
791 |
+
return config, kwargs
|
792 |
+
else:
|
793 |
+
return config
|
794 |
+
|
795 |
+
@classmethod
|
796 |
+
def from_json_file(cls, json_file: Union[str, os.PathLike]) -> "PretrainedConfig":
|
797 |
+
"""
|
798 |
+
Instantiates a [`PretrainedConfig`] from the path to a JSON file of parameters.
|
799 |
+
|
800 |
+
Args:
|
801 |
+
json_file (`str` or `os.PathLike`):
|
802 |
+
Path to the JSON file containing the parameters.
|
803 |
+
|
804 |
+
Returns:
|
805 |
+
[`PretrainedConfig`]: The configuration object instantiated from that JSON file.
|
806 |
+
|
807 |
+
"""
|
808 |
+
config_dict = cls._dict_from_json_file(json_file)
|
809 |
+
return cls(**config_dict)
|
810 |
+
|
811 |
+
@classmethod
|
812 |
+
def _dict_from_json_file(cls, json_file: Union[str, os.PathLike]):
|
813 |
+
with open(json_file, "r", encoding="utf-8") as reader:
|
814 |
+
text = reader.read()
|
815 |
+
return json.loads(text)
|
816 |
+
|
817 |
+
def __eq__(self, other):
|
818 |
+
return isinstance(other, PretrainedConfig) and (self.__dict__ == other.__dict__)
|
819 |
+
|
820 |
+
def __repr__(self):
|
821 |
+
return f"{self.__class__.__name__} {self.to_json_string()}"
|
822 |
+
|
823 |
+
def to_diff_dict(self) -> Dict[str, Any]:
|
824 |
+
"""
|
825 |
+
Removes all attributes from config which correspond to the default config attributes for better readability and
|
826 |
+
serializes to a Python dictionary.
|
827 |
+
|
828 |
+
Returns:
|
829 |
+
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance,
|
830 |
+
"""
|
831 |
+
config_dict = self.to_dict()
|
832 |
+
|
833 |
+
# get the default config dict
|
834 |
+
default_config_dict = PretrainedConfig().to_dict()
|
835 |
+
|
836 |
+
# get class specific config dict
|
837 |
+
class_config_dict = self.__class__().to_dict() if not self.is_composition else {}
|
838 |
+
|
839 |
+
serializable_config_dict = {}
|
840 |
+
|
841 |
+
# only serialize values that differ from the default config
|
842 |
+
for key, value in config_dict.items():
|
843 |
+
if (
|
844 |
+
isinstance(getattr(self, key, None), PretrainedConfig)
|
845 |
+
and key in class_config_dict
|
846 |
+
and isinstance(class_config_dict[key], dict)
|
847 |
+
):
|
848 |
+
# For nested configs we need to clean the diff recursively
|
849 |
+
diff = recursive_diff_dict(value, class_config_dict[key], config_obj=getattr(self, key, None))
|
850 |
+
if "model_type" in value:
|
851 |
+
# Needs to be set even if it's not in the diff
|
852 |
+
diff["model_type"] = value["model_type"]
|
853 |
+
if len(diff) > 0:
|
854 |
+
serializable_config_dict[key] = diff
|
855 |
+
elif (
|
856 |
+
key not in default_config_dict
|
857 |
+
or key == "transformers_version"
|
858 |
+
or value != default_config_dict[key]
|
859 |
+
or (key in class_config_dict and value != class_config_dict[key])
|
860 |
+
):
|
861 |
+
serializable_config_dict[key] = value
|
862 |
+
|
863 |
+
if hasattr(self, "quantization_config"):
|
864 |
+
serializable_config_dict["quantization_config"] = (
|
865 |
+
self.quantization_config.to_dict()
|
866 |
+
if not isinstance(self.quantization_config, dict)
|
867 |
+
else self.quantization_config
|
868 |
+
)
|
869 |
+
|
870 |
+
# pop the `_pre_quantization_dtype` as torch.dtypes are not serializable.
|
871 |
+
_ = serializable_config_dict.pop("_pre_quantization_dtype", None)
|
872 |
+
|
873 |
+
self.dict_torch_dtype_to_str(serializable_config_dict)
|
874 |
+
|
875 |
+
if "_attn_implementation_internal" in serializable_config_dict:
|
876 |
+
del serializable_config_dict["_attn_implementation_internal"]
|
877 |
+
|
878 |
+
return serializable_config_dict
|
879 |
+
|
880 |
+
def to_dict(self) -> Dict[str, Any]:
|
881 |
+
"""
|
882 |
+
Serializes this instance to a Python dictionary.
|
883 |
+
|
884 |
+
Returns:
|
885 |
+
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
|
886 |
+
"""
|
887 |
+
output = copy.deepcopy(self.__dict__)
|
888 |
+
if hasattr(self.__class__, "model_type"):
|
889 |
+
output["model_type"] = self.__class__.model_type
|
890 |
+
if "_auto_class" in output:
|
891 |
+
del output["_auto_class"]
|
892 |
+
if "_commit_hash" in output:
|
893 |
+
del output["_commit_hash"]
|
894 |
+
if "_attn_implementation_internal" in output:
|
895 |
+
del output["_attn_implementation_internal"]
|
896 |
+
|
897 |
+
# Transformers version when serializing the model
|
898 |
+
output["transformers_version"] = __version__
|
899 |
+
|
900 |
+
for key, value in output.items():
|
901 |
+
# Deal with nested configs like CLIP
|
902 |
+
if isinstance(value, PretrainedConfig):
|
903 |
+
value = value.to_dict()
|
904 |
+
del value["transformers_version"]
|
905 |
+
|
906 |
+
output[key] = value
|
907 |
+
|
908 |
+
if hasattr(self, "quantization_config"):
|
909 |
+
output["quantization_config"] = (
|
910 |
+
self.quantization_config.to_dict()
|
911 |
+
if not isinstance(self.quantization_config, dict)
|
912 |
+
else self.quantization_config
|
913 |
+
)
|
914 |
+
|
915 |
+
# pop the `_pre_quantization_dtype` as torch.dtypes are not serializable.
|
916 |
+
_ = output.pop("_pre_quantization_dtype", None)
|
917 |
+
|
918 |
+
self.dict_torch_dtype_to_str(output)
|
919 |
+
|
920 |
+
return output
|
921 |
+
|
922 |
+
def to_json_string(self, use_diff: bool = True) -> str:
|
923 |
+
"""
|
924 |
+
Serializes this instance to a JSON string.
|
925 |
+
|
926 |
+
Args:
|
927 |
+
use_diff (`bool`, *optional*, defaults to `True`):
|
928 |
+
If set to `True`, only the difference between the config instance and the default `PretrainedConfig()`
|
929 |
+
is serialized to JSON string.
|
930 |
+
|
931 |
+
Returns:
|
932 |
+
`str`: String containing all the attributes that make up this configuration instance in JSON format.
|
933 |
+
"""
|
934 |
+
if use_diff is True:
|
935 |
+
config_dict = self.to_diff_dict()
|
936 |
+
else:
|
937 |
+
config_dict = self.to_dict()
|
938 |
+
return json.dumps(config_dict, indent=2, sort_keys=True) + "\n"
|
939 |
+
|
940 |
+
def to_json_file(self, json_file_path: Union[str, os.PathLike], use_diff: bool = True):
|
941 |
+
"""
|
942 |
+
Save this instance to a JSON file.
|
943 |
+
|
944 |
+
Args:
|
945 |
+
json_file_path (`str` or `os.PathLike`):
|
946 |
+
Path to the JSON file in which this configuration instance's parameters will be saved.
|
947 |
+
use_diff (`bool`, *optional*, defaults to `True`):
|
948 |
+
If set to `True`, only the difference between the config instance and the default `PretrainedConfig()`
|
949 |
+
is serialized to JSON file.
|
950 |
+
"""
|
951 |
+
with open(json_file_path, "w", encoding="utf-8") as writer:
|
952 |
+
writer.write(self.to_json_string(use_diff=use_diff))
|
953 |
+
|
954 |
+
def update(self, config_dict: Dict[str, Any]):
|
955 |
+
"""
|
956 |
+
Updates attributes of this class with attributes from `config_dict`.
|
957 |
+
|
958 |
+
Args:
|
959 |
+
config_dict (`Dict[str, Any]`): Dictionary of attributes that should be updated for this class.
|
960 |
+
"""
|
961 |
+
for key, value in config_dict.items():
|
962 |
+
setattr(self, key, value)
|
963 |
+
|
964 |
+
def update_from_string(self, update_str: str):
|
965 |
+
"""
|
966 |
+
Updates attributes of this class with attributes from `update_str`.
|
967 |
+
|
968 |
+
The expected format is ints, floats and strings as is, and for booleans use `true` or `false`. For example:
|
969 |
+
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
|
970 |
+
|
971 |
+
The keys to change have to already exist in the config object.
|
972 |
+
|
973 |
+
Args:
|
974 |
+
update_str (`str`): String with attributes that should be updated for this class.
|
975 |
+
|
976 |
+
"""
|
977 |
+
|
978 |
+
d = dict(x.split("=") for x in update_str.split(","))
|
979 |
+
for k, v in d.items():
|
980 |
+
if not hasattr(self, k):
|
981 |
+
raise ValueError(f"key {k} isn't in the original config dict")
|
982 |
+
|
983 |
+
old_v = getattr(self, k)
|
984 |
+
if isinstance(old_v, bool):
|
985 |
+
if v.lower() in ["true", "1", "y", "yes"]:
|
986 |
+
v = True
|
987 |
+
elif v.lower() in ["false", "0", "n", "no"]:
|
988 |
+
v = False
|
989 |
+
else:
|
990 |
+
raise ValueError(f"can't derive true or false from {v} (key {k})")
|
991 |
+
elif isinstance(old_v, int):
|
992 |
+
v = int(v)
|
993 |
+
elif isinstance(old_v, float):
|
994 |
+
v = float(v)
|
995 |
+
elif not isinstance(old_v, str):
|
996 |
+
raise ValueError(
|
997 |
+
f"You can only update int, float, bool or string values in the config, got {v} for key {k}"
|
998 |
+
)
|
999 |
+
|
1000 |
+
setattr(self, k, v)
|
1001 |
+
|
1002 |
+
def dict_torch_dtype_to_str(self, d: Dict[str, Any]) -> None:
|
1003 |
+
"""
|
1004 |
+
Checks whether the passed dictionary and its nested dicts have a *torch_dtype* key and if it's not None,
|
1005 |
+
converts torch.dtype to a string of just the type. For example, `torch.float32` get converted into *"float32"*
|
1006 |
+
string, which can then be stored in the json format.
|
1007 |
+
"""
|
1008 |
+
if d.get("torch_dtype", None) is not None and not isinstance(d["torch_dtype"], str):
|
1009 |
+
d["torch_dtype"] = str(d["torch_dtype"]).split(".")[1]
|
1010 |
+
for value in d.values():
|
1011 |
+
if isinstance(value, dict):
|
1012 |
+
self.dict_torch_dtype_to_str(value)
|
1013 |
+
|
1014 |
+
@classmethod
|
1015 |
+
def register_for_auto_class(cls, auto_class="AutoConfig"):
|
1016 |
+
"""
|
1017 |
+
Register this class with a given auto class. This should only be used for custom configurations as the ones in
|
1018 |
+
the library are already mapped with `AutoConfig`.
|
1019 |
+
|
1020 |
+
<Tip warning={true}>
|
1021 |
+
|
1022 |
+
This API is experimental and may have some slight breaking changes in the next releases.
|
1023 |
+
|
1024 |
+
</Tip>
|
1025 |
+
|
1026 |
+
Args:
|
1027 |
+
auto_class (`str` or `type`, *optional*, defaults to `"AutoConfig"`):
|
1028 |
+
The auto class to register this new configuration with.
|
1029 |
+
"""
|
1030 |
+
if not isinstance(auto_class, str):
|
1031 |
+
auto_class = auto_class.__name__
|
1032 |
+
|
1033 |
+
import transformers.models.auto as auto_module
|
1034 |
+
|
1035 |
+
if not hasattr(auto_module, auto_class):
|
1036 |
+
raise ValueError(f"{auto_class} is not a valid auto class.")
|
1037 |
+
|
1038 |
+
cls._auto_class = auto_class
|
1039 |
+
|
1040 |
+
@staticmethod
|
1041 |
+
def _get_generation_defaults() -> Dict[str, Any]:
|
1042 |
+
return {
|
1043 |
+
"max_length": 20,
|
1044 |
+
"min_length": 0,
|
1045 |
+
"do_sample": False,
|
1046 |
+
"early_stopping": False,
|
1047 |
+
"num_beams": 1,
|
1048 |
+
"num_beam_groups": 1,
|
1049 |
+
"diversity_penalty": 0.0,
|
1050 |
+
"temperature": 1.0,
|
1051 |
+
"top_k": 50,
|
1052 |
+
"top_p": 1.0,
|
1053 |
+
"typical_p": 1.0,
|
1054 |
+
"repetition_penalty": 1.0,
|
1055 |
+
"length_penalty": 1.0,
|
1056 |
+
"no_repeat_ngram_size": 0,
|
1057 |
+
"encoder_no_repeat_ngram_size": 0,
|
1058 |
+
"bad_words_ids": None,
|
1059 |
+
"num_return_sequences": 1,
|
1060 |
+
"output_scores": False,
|
1061 |
+
"return_dict_in_generate": False,
|
1062 |
+
"forced_bos_token_id": None,
|
1063 |
+
"forced_eos_token_id": None,
|
1064 |
+
"remove_invalid_values": False,
|
1065 |
+
"exponential_decay_length_penalty": None,
|
1066 |
+
"suppress_tokens": None,
|
1067 |
+
"begin_suppress_tokens": None,
|
1068 |
+
}
|
1069 |
+
|
1070 |
+
def _has_non_default_generation_parameters(self) -> bool:
|
1071 |
+
"""
|
1072 |
+
Whether or not this instance holds non-default generation parameters.
|
1073 |
+
"""
|
1074 |
+
for parameter_name, default_value in self._get_generation_defaults().items():
|
1075 |
+
if hasattr(self, parameter_name) and getattr(self, parameter_name) != default_value:
|
1076 |
+
return True
|
1077 |
+
return False
|
1078 |
+
|
1079 |
+
|
1080 |
+
def get_configuration_file(configuration_files: List[str]) -> str:
|
1081 |
+
"""
|
1082 |
+
Get the configuration file to use for this version of transformers.
|
1083 |
+
|
1084 |
+
Args:
|
1085 |
+
configuration_files (`List[str]`): The list of available configuration files.
|
1086 |
+
|
1087 |
+
Returns:
|
1088 |
+
`str`: The configuration file to use.
|
1089 |
+
"""
|
1090 |
+
configuration_files_map = {}
|
1091 |
+
for file_name in configuration_files:
|
1092 |
+
search = _re_configuration_file.search(file_name)
|
1093 |
+
if search is not None:
|
1094 |
+
v = search.groups()[0]
|
1095 |
+
configuration_files_map[v] = file_name
|
1096 |
+
available_versions = sorted(configuration_files_map.keys())
|
1097 |
+
|
1098 |
+
# Defaults to FULL_CONFIGURATION_FILE and then try to look at some newer versions.
|
1099 |
+
configuration_file = CONFIG_NAME
|
1100 |
+
transformers_version = version.parse(__version__)
|
1101 |
+
for v in available_versions:
|
1102 |
+
if version.parse(v) <= transformers_version:
|
1103 |
+
configuration_file = configuration_files_map[v]
|
1104 |
+
else:
|
1105 |
+
# No point going further since the versions are sorted.
|
1106 |
+
break
|
1107 |
+
|
1108 |
+
return configuration_file
|
1109 |
+
|
1110 |
+
|
1111 |
+
def recursive_diff_dict(dict_a, dict_b, config_obj=None):
|
1112 |
+
"""
|
1113 |
+
Helper function to recursively take the diff between two nested dictionaries. The resulting diff only contains the
|
1114 |
+
values from `dict_a` that are different from values in `dict_b`.
|
1115 |
+
"""
|
1116 |
+
diff = {}
|
1117 |
+
default = config_obj.__class__().to_dict() if config_obj is not None else {}
|
1118 |
+
for key, value in dict_a.items():
|
1119 |
+
obj_value = getattr(config_obj, str(key), None)
|
1120 |
+
if isinstance(obj_value, PretrainedConfig) and key in dict_b and isinstance(dict_b[key], dict):
|
1121 |
+
diff_value = recursive_diff_dict(value, dict_b[key], config_obj=obj_value)
|
1122 |
+
if len(diff_value) > 0:
|
1123 |
+
diff[key] = diff_value
|
1124 |
+
elif key not in dict_b or value != dict_b[key] or key not in default or value != default[key]:
|
1125 |
+
diff[key] = value
|
1126 |
+
return diff
|
1127 |
+
|
1128 |
+
|
1129 |
+
PretrainedConfig.push_to_hub = copy_func(PretrainedConfig.push_to_hub)
|
1130 |
+
if PretrainedConfig.push_to_hub.__doc__ is not None:
|
1131 |
+
PretrainedConfig.push_to_hub.__doc__ = PretrainedConfig.push_to_hub.__doc__.format(
|
1132 |
+
object="config", object_class="AutoConfig", object_files="configuration file"
|
1133 |
+
)
|