Upload 2 files
Browse files- configuration_mistral.py +0 -2
- modeling_mistral.py +2065 -14
configuration_mistral.py
CHANGED
@@ -190,8 +190,6 @@ class MistralConfig(PretrainedConfig):
|
|
190 |
self.use_complex_think_head = use_complex_think_head
|
191 |
self.use_complex_talk_head = use_complex_talk_head
|
192 |
self.use_weighted_talk_head = use_weighted_talk_head
|
193 |
-
|
194 |
-
|
195 |
|
196 |
super().__init__(
|
197 |
pad_token_id=pad_token_id,
|
|
|
190 |
self.use_complex_think_head = use_complex_think_head
|
191 |
self.use_complex_talk_head = use_complex_talk_head
|
192 |
self.use_weighted_talk_head = use_weighted_talk_head
|
|
|
|
|
193 |
|
194 |
super().__init__(
|
195 |
pad_token_id=pad_token_id,
|
modeling_mistral.py
CHANGED
@@ -36,25 +36,31 @@ import warnings
|
|
36 |
from collections import defaultdict
|
37 |
from typing import List, Optional, Tuple, Union
|
38 |
|
|
|
39 |
import torch
|
40 |
import torch.nn.functional as F
|
41 |
import torch.utils.checkpoint
|
42 |
from torch import nn
|
43 |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
44 |
-
|
45 |
-
from
|
46 |
-
from
|
47 |
-
|
48 |
-
|
49 |
-
from
|
50 |
-
from
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
57 |
)
|
|
|
58 |
from .configuration_mistral import MistralConfig
|
59 |
|
60 |
|
@@ -64,6 +70,14 @@ if is_flash_attn_2_available():
|
|
64 |
|
65 |
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
logger = logging.get_logger(__name__)
|
69 |
|
@@ -134,6 +148,116 @@ def save_tokens_with_rewards_to_pdf(input_ids, token_rewards, tokenizer, output_
|
|
134 |
previous_text = current_text
|
135 |
c.showPage()
|
136 |
c.save()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
|
139 |
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
@@ -148,6 +272,88 @@ def _get_unpad_data(attention_mask):
|
|
148 |
max_seqlen_in_batch,
|
149 |
)
|
150 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Mistral
|
153 |
class MistralRMSNorm(nn.Module):
|
@@ -476,10 +682,11 @@ class MistralAttention(nn.Module):
|
|
476 |
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
477 |
|
478 |
self._init_rope()
|
479 |
-
|
480 |
|
481 |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
482 |
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
|
|
483 |
def _init_rope(self):
|
484 |
if self.config.rope_scaling is None:
|
485 |
self.rotary_emb = MistralRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings, base=self.rope_theta)
|
@@ -2574,3 +2781,1847 @@ class MistralForSequenceClassification(MistralPreTrainedModel):
|
|
2574 |
hidden_states=transformer_outputs.hidden_states,
|
2575 |
attentions=transformer_outputs.attentions,
|
2576 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
from collections import defaultdict
|
37 |
from typing import List, Optional, Tuple, Union
|
38 |
|
39 |
+
|
40 |
import torch
|
41 |
import torch.nn.functional as F
|
42 |
import torch.utils.checkpoint
|
43 |
from torch import nn
|
44 |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
45 |
+
from transformers.generation.utils import GenerationMixin
|
46 |
+
from transformers.generation.stopping_criteria import StoppingCriteriaList, validate_stopping_criteria
|
47 |
+
from transformers import TextStreamer, AutoTokenizer
|
48 |
+
import transformers
|
49 |
+
|
50 |
+
from transformers.activations import ACT2FN
|
51 |
+
from transformers.cache_utils import Cache, DynamicCache
|
52 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
53 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
54 |
+
from transformers.modeling_utils import PreTrainedModel
|
55 |
+
from transformers.utils import (
|
56 |
+
add_start_docstrings,
|
57 |
+
add_start_docstrings_to_model_forward,
|
58 |
+
is_flash_attn_2_available,
|
59 |
+
is_flash_attn_greater_or_equal_2_10,
|
60 |
+
logging,
|
61 |
+
replace_return_docstrings,
|
62 |
)
|
63 |
+
|
64 |
from .configuration_mistral import MistralConfig
|
65 |
|
66 |
|
|
|
70 |
|
71 |
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
|
72 |
|
73 |
+
from .configuration_quiet import QuietConfig
|
74 |
+
|
75 |
+
import time
|
76 |
+
from typing import Optional, List
|
77 |
+
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
|
82 |
logger = logging.get_logger(__name__)
|
83 |
|
|
|
148 |
previous_text = current_text
|
149 |
c.showPage()
|
150 |
c.save()
|
151 |
+
def _prepare_4d_causal_attention_mask_for_sdpa(attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
152 |
+
# Compute the attention mask correctly
|
153 |
+
bsz, tgt_len = input_shape
|
154 |
+
|
155 |
+
# Create a 4D attention mask from a 2D tensor mask.
|
156 |
+
# The shape of the output attention mask is (batch_size, 1, tgt_len, src_len)
|
157 |
+
# The values are either 0 or 1, where 0 means padding and 1 means non-padding.
|
158 |
+
combined_attention_mask = None
|
159 |
+
if attention_mask is not None:
|
160 |
+
# What if attention_mask is not None and has a shape of (batch_size, 1, tgt_len, src_len)
|
161 |
+
# In this case, we can just use it directly.
|
162 |
+
if attention_mask.dim() == 4:
|
163 |
+
combined_attention_mask = attention_mask
|
164 |
+
# What if attention_mask is not None and has a shape of (batch_size, 1, tgt_len)
|
165 |
+
# In this case, we need to expand it to (batch_size, 1, tgt_len, src_len)
|
166 |
+
elif attention_mask.dim() == 3:
|
167 |
+
expanded_attn_mask = attention_mask[:, None, :, :]
|
168 |
+
combined_attention_mask = expanded_attn_mask
|
169 |
+
# What if attention_mask is not None and has a shape of (batch_size, tgt_len)
|
170 |
+
# In this case, we need to expand it to (batch_size, 1, tgt_len, src_len)
|
171 |
+
elif attention_mask.dim() == 2:
|
172 |
+
# Provided a padding mask of dimensions [batch_size, seq_length]
|
173 |
+
# - if the model is a decoder, apply a causal mask in addition to the padding mask
|
174 |
+
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
175 |
+
if past_key_values_length > 0:
|
176 |
+
attention_mask = attention_mask.to(dtype=torch.long)
|
177 |
+
attention_mask = attention_mask[:, past_key_values_length:]
|
178 |
+
expanded_attn_mask = attention_mask[:, None, None, :]
|
179 |
+
combined_attention_mask = expanded_attn_mask
|
180 |
+
else:
|
181 |
+
raise ValueError(
|
182 |
+
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
|
183 |
+
input_shape, attention_mask.shape
|
184 |
+
)
|
185 |
+
)
|
186 |
+
|
187 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
188 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
189 |
+
# positions we want to attend and -10000.0 for masked positions.
|
190 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
191 |
+
# effectively the same as removing these entirely.
|
192 |
+
if combined_attention_mask is not None:
|
193 |
+
# Ensure the attention mask values are within a reasonable range
|
194 |
+
combined_attention_mask = combined_attention_mask.clamp(min=0, max=1)
|
195 |
+
|
196 |
+
# Convert the attention mask to bfloat16
|
197 |
+
combined_attention_mask = combined_attention_mask.to(torch.bfloat16)
|
198 |
+
|
199 |
+
# Normalize the attention mask values to be between 0 and 1
|
200 |
+
combined_attention_mask = (1.0 - combined_attention_mask) * -10000.0
|
201 |
+
else:
|
202 |
+
combined_attention_mask = torch.zeros(
|
203 |
+
(bsz, 1, tgt_len, tgt_len), dtype=torch.bfloat16, device=inputs_embeds.device
|
204 |
+
)
|
205 |
+
|
206 |
+
return combined_attention_mask
|
207 |
+
|
208 |
+
|
209 |
+
|
210 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Quiet
|
211 |
+
class QuietRMSNorm(nn.Module):
|
212 |
+
def __init__(self, hidden_size, eps=1e-6):
|
213 |
+
super().__init__()
|
214 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
215 |
+
self.variance_epsilon = eps
|
216 |
+
|
217 |
+
|
218 |
+
def forward(self, hidden_states):
|
219 |
+
input_dtype = hidden_states.dtype
|
220 |
+
hidden_states = hidden_states.to(torch.float32)
|
221 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
222 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
223 |
+
return hidden_states.to(input_dtype) * self.weight.to(hidden_states.device)
|
224 |
+
|
225 |
+
|
226 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Quiet
|
227 |
+
class QuietRotaryEmbedding(nn.Module):
|
228 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
229 |
+
super().__init__()
|
230 |
+
|
231 |
+
self.dim = dim
|
232 |
+
self.max_position_embeddings = max_position_embeddings
|
233 |
+
self.base = base
|
234 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
235 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
236 |
+
|
237 |
+
# Build here to make `torch.jit.trace` work.
|
238 |
+
self._set_cos_sin_cache(
|
239 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
240 |
+
)
|
241 |
+
|
242 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
243 |
+
self.max_seq_len_cached = seq_len
|
244 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
245 |
+
|
246 |
+
freqs = torch.outer(t, self.inv_freq)
|
247 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
248 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
249 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
250 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
251 |
+
|
252 |
+
def forward(self, x, seq_len=None):
|
253 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
254 |
+
if seq_len > self.max_seq_len_cached:
|
255 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
256 |
+
|
257 |
+
return (
|
258 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
259 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
260 |
+
)
|
261 |
|
262 |
|
263 |
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
|
|
272 |
max_seqlen_in_batch,
|
273 |
)
|
274 |
|
275 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
276 |
+
def _make_causal_mask(
|
277 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
278 |
+
):
|
279 |
+
"""
|
280 |
+
Make causal mask used for bi-directional self-attention.
|
281 |
+
"""
|
282 |
+
bsz, tgt_len = input_ids_shape
|
283 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
284 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
285 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
286 |
+
mask = mask.to(dtype)
|
287 |
+
|
288 |
+
if past_key_values_length > 0:
|
289 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
290 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
291 |
+
|
292 |
+
def _make_sliding_window_causal_mask(
|
293 |
+
input_ids_shape: torch.Size,
|
294 |
+
dtype: torch.dtype,
|
295 |
+
device: torch.device,
|
296 |
+
past_key_values_length: int = 0,
|
297 |
+
sliding_window: int = 4096,
|
298 |
+
):
|
299 |
+
"""
|
300 |
+
Make causal mask used for sliding window attention
|
301 |
+
"""
|
302 |
+
bsz, tgt_len = input_ids_shape
|
303 |
+
|
304 |
+
tensor = torch.full(
|
305 |
+
(tgt_len, tgt_len),
|
306 |
+
fill_value=1,
|
307 |
+
device=device,
|
308 |
+
)
|
309 |
+
mask = torch.tril(tensor, diagonal=0)
|
310 |
+
# make the mask banded to account for sliding window
|
311 |
+
mask = torch.triu(mask, diagonal=-sliding_window)
|
312 |
+
mask = torch.log(mask).to(dtype)
|
313 |
+
|
314 |
+
if past_key_values_length > 0:
|
315 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
316 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
317 |
+
|
318 |
+
|
319 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
320 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
321 |
+
"""
|
322 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
323 |
+
"""
|
324 |
+
bsz, src_len = mask.size()
|
325 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
326 |
+
|
327 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
328 |
+
|
329 |
+
inverted_mask = 1.0 - expanded_mask
|
330 |
+
|
331 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
332 |
+
|
333 |
+
# Inverse dim formula to find dim based on number of rotations
|
334 |
+
def _yarn_find_correction_dim(num_rotations, dim, base=10000, max_position_embeddings=2048):
|
335 |
+
return (dim * math.log(max_position_embeddings/(num_rotations * 2 * math.pi)))/(2 * math.log(base))
|
336 |
+
|
337 |
+
# Find dim range bounds based on rotations
|
338 |
+
def _yarn_find_correction_range(low_rot, high_rot, dim, base=10000, max_position_embeddings=2048):
|
339 |
+
low = math.floor(_yarn_find_correction_dim(
|
340 |
+
low_rot, dim, base, max_position_embeddings))
|
341 |
+
high = math.ceil(_yarn_find_correction_dim(
|
342 |
+
high_rot, dim, base, max_position_embeddings))
|
343 |
+
return max(low, 0), min(high, dim-1) # Clamp values just in case
|
344 |
+
|
345 |
+
def _yarn_linear_ramp_mask(min, max, dim):
|
346 |
+
if min == max:
|
347 |
+
max += 0.001 # Prevent singularity
|
348 |
+
|
349 |
+
linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
|
350 |
+
ramp_func = torch.clamp(linear_func, 0, 1)
|
351 |
+
return ramp_func
|
352 |
+
|
353 |
+
def _yarn_get_mscale(scale=1):
|
354 |
+
if scale <= 1:
|
355 |
+
return 1.0
|
356 |
+
return 0.07 * math.log(scale) + 1.0
|
357 |
|
358 |
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Mistral
|
359 |
class MistralRMSNorm(nn.Module):
|
|
|
682 |
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
683 |
|
684 |
self._init_rope()
|
685 |
+
|
686 |
|
687 |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
688 |
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
689 |
+
|
690 |
def _init_rope(self):
|
691 |
if self.config.rope_scaling is None:
|
692 |
self.rotary_emb = MistralRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings, base=self.rope_theta)
|
|
|
2781 |
hidden_states=transformer_outputs.hidden_states,
|
2782 |
attentions=transformer_outputs.attentions,
|
2783 |
)
|
2784 |
+
|
2785 |
+
class QuietMLP(nn.Module):
|
2786 |
+
def __init__(self, config):
|
2787 |
+
super().__init__()
|
2788 |
+
self.config = config
|
2789 |
+
self.hidden_size = config.hidden_size
|
2790 |
+
self.intermediate_size = config.intermediate_size
|
2791 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
2792 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
2793 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
2794 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
2795 |
+
|
2796 |
+
def forward(self, x):
|
2797 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
2798 |
+
|
2799 |
+
|
2800 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
2801 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
2802 |
+
"""
|
2803 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
2804 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
2805 |
+
"""
|
2806 |
+
|
2807 |
+
# pdb.set_trace()
|
2808 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
2809 |
+
if n_rep == 1:
|
2810 |
+
return hidden_states
|
2811 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
2812 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
2813 |
+
|
2814 |
+
|
2815 |
+
class QuietAttention(nn.Module):
|
2816 |
+
"""
|
2817 |
+
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
|
2818 |
+
and "Generating Long Sequences with Sparse Transformers".
|
2819 |
+
"""
|
2820 |
+
|
2821 |
+
def __init__(self, config: QuietConfig, layer_idx: Optional[int] = None):
|
2822 |
+
super().__init__()
|
2823 |
+
self.config = config
|
2824 |
+
self.layer_idx = layer_idx
|
2825 |
+
if layer_idx is None:
|
2826 |
+
logger.warning_once(
|
2827 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
2828 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
2829 |
+
"when creating this class."
|
2830 |
+
)
|
2831 |
+
|
2832 |
+
self.hidden_size = config.hidden_size
|
2833 |
+
self.num_heads = config.num_attention_heads
|
2834 |
+
self.head_dim = self.hidden_size // self.num_heads
|
2835 |
+
self.num_key_value_heads = config.num_key_value_heads
|
2836 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
2837 |
+
self.max_position_embeddings = config.max_position_embeddings
|
2838 |
+
self.rope_theta = config.rope_theta
|
2839 |
+
self.is_causal = True
|
2840 |
+
self.attention_dropout = config.attention_dropout
|
2841 |
+
self._attn_implementation = config._attn_implementation
|
2842 |
+
|
2843 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
2844 |
+
raise ValueError(
|
2845 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
2846 |
+
f" and `num_heads`: {self.num_heads})."
|
2847 |
+
)
|
2848 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
2849 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
2850 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
2851 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
2852 |
+
|
2853 |
+
self.rotary_emb = QuietRotaryEmbedding(
|
2854 |
+
self.head_dim,
|
2855 |
+
max_position_embeddings=self.max_position_embeddings,
|
2856 |
+
base=self.rope_theta,
|
2857 |
+
)
|
2858 |
+
|
2859 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
2860 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
2861 |
+
|
2862 |
+
def forward(
|
2863 |
+
self,
|
2864 |
+
hidden_states: torch.Tensor,
|
2865 |
+
attention_mask: Optional[torch.Tensor] = None,
|
2866 |
+
position_ids: Optional[torch.LongTensor] = None,
|
2867 |
+
past_key_value: Optional[Cache] = None,
|
2868 |
+
output_attentions: bool = False,
|
2869 |
+
use_cache: bool = False,
|
2870 |
+
**kwargs,
|
2871 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
2872 |
+
if "padding_mask" in kwargs:
|
2873 |
+
warnings.warn(
|
2874 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
2875 |
+
)
|
2876 |
+
bsz, q_len, _ = hidden_states.size()
|
2877 |
+
|
2878 |
+
query_states = self.q_proj(hidden_states)
|
2879 |
+
key_states = self.k_proj(hidden_states)
|
2880 |
+
value_states = self.v_proj(hidden_states)
|
2881 |
+
|
2882 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
2883 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
2884 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
2885 |
+
|
2886 |
+
kv_seq_len = key_states.shape[-2]
|
2887 |
+
if past_key_value is not None:
|
2888 |
+
if self.layer_idx is None:
|
2889 |
+
raise ValueError(
|
2890 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
2891 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
2892 |
+
"with a layer index."
|
2893 |
+
)
|
2894 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
2895 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
2896 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
2897 |
+
|
2898 |
+
if past_key_value is not None:
|
2899 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
2900 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
2901 |
+
|
2902 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
2903 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
2904 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
2905 |
+
|
2906 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
2907 |
+
|
2908 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
2909 |
+
raise ValueError(
|
2910 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
2911 |
+
f" {attn_weights.size()}"
|
2912 |
+
)
|
2913 |
+
if self._attn_implementation == "flash_attention_2":
|
2914 |
+
# Prepare attention mask for flash-attn
|
2915 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
2916 |
+
elif self._attn_implementation == "sdpa":
|
2917 |
+
# Prepare attention mask for SDPA
|
2918 |
+
if attention_mask is None or attention_mask.dim() == 2:
|
2919 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
2920 |
+
attention_mask,
|
2921 |
+
(batch_size, seq_length),
|
2922 |
+
inputs_embeds,
|
2923 |
+
past_key_values_length,
|
2924 |
+
sliding_window=self.config.sliding_window,
|
2925 |
+
)
|
2926 |
+
else:
|
2927 |
+
# Prepare attention mask for other implementations
|
2928 |
+
if attention_mask is None or attention_mask.dim() == 2:
|
2929 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
2930 |
+
attention_mask,
|
2931 |
+
(batch_size, seq_length),
|
2932 |
+
inputs_embeds,
|
2933 |
+
past_key_values_length,
|
2934 |
+
sliding_window=self.config.sliding_window,
|
2935 |
+
)
|
2936 |
+
|
2937 |
+
if attention_mask is not None:
|
2938 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
2939 |
+
raise ValueError(
|
2940 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
2941 |
+
)
|
2942 |
+
|
2943 |
+
attn_weights = attn_weights + attention_mask
|
2944 |
+
|
2945 |
+
# upcast attention to fp32
|
2946 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
2947 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
2948 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
2949 |
+
|
2950 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
2951 |
+
raise ValueError(
|
2952 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
2953 |
+
f" {attn_output.size()}"
|
2954 |
+
)
|
2955 |
+
|
2956 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
2957 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
2958 |
+
|
2959 |
+
attn_output = self.o_proj(attn_output)
|
2960 |
+
|
2961 |
+
if not output_attentions:
|
2962 |
+
attn_weights = None
|
2963 |
+
|
2964 |
+
return attn_output, attn_weights, past_key_value
|
2965 |
+
|
2966 |
+
|
2967 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Quiet
|
2968 |
+
class QuietSdpaAttention(QuietAttention):
|
2969 |
+
"""
|
2970 |
+
Quiet attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
2971 |
+
`QuietAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
2972 |
+
SDPA API.
|
2973 |
+
"""
|
2974 |
+
|
2975 |
+
# Adapted from QuietAttention.forward
|
2976 |
+
def forward(
|
2977 |
+
self,
|
2978 |
+
hidden_states: torch.Tensor,
|
2979 |
+
attention_mask: Optional[torch.Tensor] = None,
|
2980 |
+
position_ids: Optional[torch.LongTensor] = None,
|
2981 |
+
past_key_value: Optional[Cache] = None,
|
2982 |
+
output_attentions: bool = False,
|
2983 |
+
use_cache: bool = False,
|
2984 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
2985 |
+
if output_attentions:
|
2986 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
2987 |
+
logger.warning_once(
|
2988 |
+
"QuietModel is using QuietSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
2989 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
2990 |
+
)
|
2991 |
+
return super().forward(
|
2992 |
+
hidden_states=hidden_states,
|
2993 |
+
attention_mask=attention_mask,
|
2994 |
+
position_ids=position_ids,
|
2995 |
+
past_key_value=past_key_value,
|
2996 |
+
output_attentions=output_attentions,
|
2997 |
+
use_cache=use_cache,
|
2998 |
+
)
|
2999 |
+
bsz, q_len, _ = hidden_states.size()
|
3000 |
+
|
3001 |
+
query_states = self.q_proj(hidden_states)
|
3002 |
+
key_states = self.k_proj(hidden_states)
|
3003 |
+
value_states = self.v_proj(hidden_states)
|
3004 |
+
|
3005 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
3006 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
3007 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
3008 |
+
|
3009 |
+
kv_seq_len = key_states.shape[-2]
|
3010 |
+
if past_key_value is not None:
|
3011 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
3012 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
3013 |
+
|
3014 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
3015 |
+
|
3016 |
+
if past_key_value is not None:
|
3017 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
3018 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
3019 |
+
|
3020 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
3021 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
3022 |
+
|
3023 |
+
if attention_mask is not None:
|
3024 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
3025 |
+
raise ValueError(
|
3026 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
3027 |
+
)
|
3028 |
+
attention_mask = attention_mask.to(query_states.dtype)
|
3029 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
3030 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
3031 |
+
if query_states.device.type == "cuda" and attention_mask is not None:
|
3032 |
+
query_states = query_states.contiguous()
|
3033 |
+
key_states = key_states.contiguous()
|
3034 |
+
value_states = value_states.contiguous()
|
3035 |
+
|
3036 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
3037 |
+
query_states,
|
3038 |
+
key_states,
|
3039 |
+
value_states,
|
3040 |
+
attn_mask=attention_mask.to(query_states.device) if attention_mask is not None else None,
|
3041 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
3042 |
+
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
3043 |
+
is_causal=self.is_causal and attention_mask is None and q_len > 1,
|
3044 |
+
)
|
3045 |
+
|
3046 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
3047 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
3048 |
+
|
3049 |
+
attn_output = self.o_proj(attn_output)
|
3050 |
+
|
3051 |
+
return attn_output, None, past_key_value
|
3052 |
+
|
3053 |
+
|
3054 |
+
QUIET_ATTENTION_CLASSES = {
|
3055 |
+
"eager": QuietAttention,
|
3056 |
+
"sdpa": QuietSdpaAttention,
|
3057 |
+
}
|
3058 |
+
|
3059 |
+
|
3060 |
+
class QuietDecoderLayer(nn.Module):
|
3061 |
+
def __init__(self, config: QuietConfig, layer_idx: int):
|
3062 |
+
super().__init__()
|
3063 |
+
self.hidden_size = config.hidden_size
|
3064 |
+
|
3065 |
+
self.self_attn = QUIET_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
|
3066 |
+
|
3067 |
+
self.mlp = QuietMLP(config)
|
3068 |
+
self.input_layernorm = QuietRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
3069 |
+
self.post_attention_layernorm = QuietRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
3070 |
+
|
3071 |
+
def forward(
|
3072 |
+
self,
|
3073 |
+
hidden_states: torch.Tensor,
|
3074 |
+
attention_mask: Optional[torch.Tensor] = None,
|
3075 |
+
position_ids: Optional[torch.LongTensor] = None,
|
3076 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
3077 |
+
output_attentions: Optional[bool] = False,
|
3078 |
+
use_cache: Optional[bool] = False,
|
3079 |
+
**kwargs,
|
3080 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
3081 |
+
if "padding_mask" in kwargs:
|
3082 |
+
warnings.warn(
|
3083 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
3084 |
+
)
|
3085 |
+
"""
|
3086 |
+
Args:
|
3087 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
3088 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
3089 |
+
`(batch, sequence_length)` where padding elements are indicated by 0.
|
3090 |
+
output_attentions (`bool`, *optional*):
|
3091 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
3092 |
+
returned tensors for more detail.
|
3093 |
+
use_cache (`bool`, *optional*):
|
3094 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
3095 |
+
(see `past_key_values`).
|
3096 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
3097 |
+
"""
|
3098 |
+
|
3099 |
+
residual = hidden_states
|
3100 |
+
|
3101 |
+
hidden_states = self.input_layernorm(hidden_states)
|
3102 |
+
|
3103 |
+
# Self Attention
|
3104 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
3105 |
+
hidden_states=hidden_states,
|
3106 |
+
attention_mask=attention_mask,
|
3107 |
+
position_ids=position_ids,
|
3108 |
+
past_key_value=past_key_value,
|
3109 |
+
output_attentions=output_attentions,
|
3110 |
+
use_cache=use_cache,
|
3111 |
+
)
|
3112 |
+
hidden_states = residual.to(hidden_states.device) + hidden_states
|
3113 |
+
|
3114 |
+
# Fully Connected
|
3115 |
+
residual = hidden_states
|
3116 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
3117 |
+
hidden_states = self.mlp(hidden_states)
|
3118 |
+
hidden_states = residual + hidden_states
|
3119 |
+
|
3120 |
+
outputs = (hidden_states,)
|
3121 |
+
|
3122 |
+
if output_attentions:
|
3123 |
+
outputs += (self_attn_weights,)
|
3124 |
+
|
3125 |
+
if use_cache:
|
3126 |
+
outputs += (present_key_value,)
|
3127 |
+
|
3128 |
+
return outputs
|
3129 |
+
|
3130 |
+
|
3131 |
+
QUIET_START_DOCSTRING = r"""
|
3132 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
3133 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
3134 |
+
etc.)
|
3135 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
3136 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
3137 |
+
and behavior.
|
3138 |
+
Parameters:
|
3139 |
+
config ([`QuietConfig`]):
|
3140 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
3141 |
+
load the weights associated with the model, only the configuration. Check out the
|
3142 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
3143 |
+
"""
|
3144 |
+
|
3145 |
+
|
3146 |
+
@add_start_docstrings(
|
3147 |
+
"The bare Quiet Model outputting raw hidden-states without any specific head on top.",
|
3148 |
+
QUIET_START_DOCSTRING,
|
3149 |
+
)
|
3150 |
+
class QuietPreTrainedModel(PreTrainedModel):
|
3151 |
+
config_class = QuietConfig
|
3152 |
+
base_model_prefix = "model"
|
3153 |
+
supports_gradient_checkpointing = True
|
3154 |
+
_no_split_modules = ["QuietDecoderLayer"]
|
3155 |
+
_skip_keys_device_placement = "past_key_values"
|
3156 |
+
_supports_flash_attn_2 = True
|
3157 |
+
_supports_sdpa = True
|
3158 |
+
_supports_cache_class = True
|
3159 |
+
|
3160 |
+
def _init_weights(self, module):
|
3161 |
+
std = self.config.initializer_range
|
3162 |
+
if isinstance(module, nn.Linear):
|
3163 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
3164 |
+
if module.bias is not None:
|
3165 |
+
module.bias.data.zero_()
|
3166 |
+
elif isinstance(module, nn.Embedding):
|
3167 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
3168 |
+
if module.padding_idx is not None:
|
3169 |
+
module.weight.data[module.padding_idx].zero_()
|
3170 |
+
|
3171 |
+
|
3172 |
+
QUIET_INPUTS_DOCSTRING = r"""
|
3173 |
+
Args:
|
3174 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
3175 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
3176 |
+
it.
|
3177 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
3178 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
3179 |
+
[What are input IDs?](../glossary#input-ids)
|
3180 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
3181 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
3182 |
+
- 1 for tokens that are **not masked**,
|
3183 |
+
- 0 for tokens that are **masked**.
|
3184 |
+
[What are attention masks?](../glossary#attention-mask)
|
3185 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
3186 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
3187 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
3188 |
+
`past_key_values`).
|
3189 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
3190 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
3191 |
+
information on the default strategy.
|
3192 |
+
- 1 indicates the head is **not masked**,
|
3193 |
+
- 0 indicates the head is **masked**.
|
3194 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
3195 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
3196 |
+
config.n_positions - 1]`.
|
3197 |
+
[What are position IDs?](../glossary#position-ids)
|
3198 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
3199 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
3200 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
3201 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
3202 |
+
Two formats are allowed:
|
3203 |
+
- a [`~cache_utils.Cache`] instance;
|
3204 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
3205 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
3206 |
+
cache format.
|
3207 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
3208 |
+
legacy cache format will be returned.
|
3209 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
3210 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
3211 |
+
of shape `(batch_size, sequence_length)`.
|
3212 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
3213 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
3214 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
3215 |
+
model's internal embedding lookup matrix.
|
3216 |
+
use_cache (`bool`, *optional*):
|
3217 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
3218 |
+
`past_key_values`).
|
3219 |
+
output_attentions (`bool`, *optional*):
|
3220 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
3221 |
+
tensors for more detail.
|
3222 |
+
output_hidden_states (`bool`, *optional*):
|
3223 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
3224 |
+
more detail.
|
3225 |
+
return_dict (`bool`, *optional*):
|
3226 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
3227 |
+
"""
|
3228 |
+
|
3229 |
+
|
3230 |
+
@add_start_docstrings(
|
3231 |
+
"The bare Quiet Model outputting raw hidden-states without any specific head on top.",
|
3232 |
+
QUIET_START_DOCSTRING,
|
3233 |
+
)
|
3234 |
+
class QuietModel(QuietPreTrainedModel):
|
3235 |
+
"""
|
3236 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`QuietDecoderLayer`]
|
3237 |
+
Args:
|
3238 |
+
config: QuietConfig
|
3239 |
+
"""
|
3240 |
+
|
3241 |
+
def __init__(self, config: QuietConfig):
|
3242 |
+
super().__init__(config)
|
3243 |
+
self.padding_idx = config.pad_token_id
|
3244 |
+
self.vocab_size = config.vocab_size
|
3245 |
+
|
3246 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
3247 |
+
self.layers = nn.ModuleList(
|
3248 |
+
[QuietDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
3249 |
+
)
|
3250 |
+
self._attn_implementation = config._attn_implementation
|
3251 |
+
self.norm = QuietRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
3252 |
+
|
3253 |
+
self.gradient_checkpointing = False
|
3254 |
+
# Initialize weights and apply final processing
|
3255 |
+
self.post_init()
|
3256 |
+
|
3257 |
+
def get_input_embeddings(self):
|
3258 |
+
return self.embed_tokens
|
3259 |
+
|
3260 |
+
def set_input_embeddings(self, value):
|
3261 |
+
self.embed_tokens = value
|
3262 |
+
|
3263 |
+
@add_start_docstrings_to_model_forward(QUIET_INPUTS_DOCSTRING)
|
3264 |
+
def forward(
|
3265 |
+
self,
|
3266 |
+
input_ids: torch.LongTensor = None,
|
3267 |
+
attention_mask: Optional[torch.Tensor] = None,
|
3268 |
+
position_ids: Optional[torch.LongTensor] = None,
|
3269 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
3270 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
3271 |
+
use_cache: Optional[bool] = None,
|
3272 |
+
output_attentions: Optional[bool] = None,
|
3273 |
+
output_hidden_states: Optional[bool] = None,
|
3274 |
+
return_dict: Optional[bool] = None,
|
3275 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
3276 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
3277 |
+
output_hidden_states = (
|
3278 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
3279 |
+
)
|
3280 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
3281 |
+
|
3282 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
3283 |
+
|
3284 |
+
# retrieve input_ids and inputs_embeds
|
3285 |
+
if input_ids is not None and inputs_embeds is not None:
|
3286 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
3287 |
+
elif input_ids is not None:
|
3288 |
+
batch_size, seq_length = input_ids.shape
|
3289 |
+
elif inputs_embeds is not None:
|
3290 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
3291 |
+
else:
|
3292 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
3293 |
+
|
3294 |
+
if self.gradient_checkpointing and self.training:
|
3295 |
+
if use_cache:
|
3296 |
+
logger.warning_once(
|
3297 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
3298 |
+
)
|
3299 |
+
use_cache = False
|
3300 |
+
|
3301 |
+
past_key_values_length = 0
|
3302 |
+
|
3303 |
+
if use_cache:
|
3304 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
3305 |
+
if use_legacy_cache:
|
3306 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
3307 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
3308 |
+
|
3309 |
+
if position_ids is None:
|
3310 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
3311 |
+
position_ids = torch.arange(
|
3312 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
3313 |
+
)
|
3314 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
3315 |
+
else:
|
3316 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
3317 |
+
|
3318 |
+
if inputs_embeds is None:
|
3319 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
3320 |
+
|
3321 |
+
if self._attn_implementation == "flash_attention_2":
|
3322 |
+
# 2d mask is passed through the layers
|
3323 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
3324 |
+
elif self._attn_implementation == "sdpa" and not output_attentions and attention_mask is not None and attention_mask.dim() == 2:
|
3325 |
+
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
3326 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
3327 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
3328 |
+
attention_mask,
|
3329 |
+
(batch_size, seq_length),
|
3330 |
+
inputs_embeds,
|
3331 |
+
past_key_values_length,
|
3332 |
+
)
|
3333 |
+
elif attention_mask is None or (attention_mask is not None and attention_mask.dim() == 2):
|
3334 |
+
# 4d mask is passed through the layers
|
3335 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
3336 |
+
attention_mask,
|
3337 |
+
(batch_size, seq_length),
|
3338 |
+
inputs_embeds,
|
3339 |
+
past_key_values_length,
|
3340 |
+
sliding_window=self.config.sliding_window,
|
3341 |
+
)
|
3342 |
+
|
3343 |
+
|
3344 |
+
hidden_states = inputs_embeds
|
3345 |
+
|
3346 |
+
# decoder layers
|
3347 |
+
all_hidden_states = () if output_hidden_states else None
|
3348 |
+
all_self_attns = () if output_attentions else None
|
3349 |
+
next_decoder_cache = None
|
3350 |
+
|
3351 |
+
for decoder_layer in self.layers:
|
3352 |
+
if output_hidden_states:
|
3353 |
+
all_hidden_states += (hidden_states,)
|
3354 |
+
|
3355 |
+
if self.gradient_checkpointing and self.training:
|
3356 |
+
layer_outputs = self._gradient_checkpointing_func(
|
3357 |
+
decoder_layer.__call__,
|
3358 |
+
hidden_states,
|
3359 |
+
attention_mask,
|
3360 |
+
position_ids,
|
3361 |
+
past_key_values,
|
3362 |
+
output_attentions,
|
3363 |
+
use_cache,
|
3364 |
+
)
|
3365 |
+
else:
|
3366 |
+
layer_outputs = decoder_layer(
|
3367 |
+
hidden_states,
|
3368 |
+
attention_mask=attention_mask,
|
3369 |
+
position_ids=position_ids,
|
3370 |
+
past_key_value=past_key_values,
|
3371 |
+
output_attentions=output_attentions,
|
3372 |
+
use_cache=use_cache,
|
3373 |
+
)
|
3374 |
+
|
3375 |
+
hidden_states = layer_outputs[0]
|
3376 |
+
|
3377 |
+
if use_cache:
|
3378 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
3379 |
+
|
3380 |
+
if output_attentions:
|
3381 |
+
all_self_attns += (layer_outputs[1],)
|
3382 |
+
|
3383 |
+
hidden_states = self.norm(hidden_states)
|
3384 |
+
|
3385 |
+
# add hidden states from the last decoder layer
|
3386 |
+
if output_hidden_states:
|
3387 |
+
all_hidden_states += (hidden_states,)
|
3388 |
+
|
3389 |
+
next_cache = None
|
3390 |
+
if use_cache:
|
3391 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
3392 |
+
|
3393 |
+
if not return_dict:
|
3394 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
3395 |
+
return BaseModelOutputWithPast(
|
3396 |
+
last_hidden_state=hidden_states,
|
3397 |
+
past_key_values=next_cache,
|
3398 |
+
hidden_states=all_hidden_states,
|
3399 |
+
attentions=all_self_attns,
|
3400 |
+
)
|
3401 |
+
|
3402 |
+
def nonzero_mean(x, axis=None):
|
3403 |
+
if axis is not None:
|
3404 |
+
return x.sum(axis) / (x != 0).sum(axis)
|
3405 |
+
return x.sum() / (x != 0).sum()
|
3406 |
+
|
3407 |
+
def loss_mean(x):
|
3408 |
+
return x.sum() / (x != 0).sum()
|
3409 |
+
|
3410 |
+
class QuietForCausalLM(QuietPreTrainedModel, GenerationMixin):
|
3411 |
+
_tied_weights_keys = ["lm_head.weight"]
|
3412 |
+
|
3413 |
+
def __init__(self, config):
|
3414 |
+
super().__init__(config)
|
3415 |
+
self.model = QuietModel(config)
|
3416 |
+
self.vocab_size = config.vocab_size
|
3417 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
3418 |
+
# self.router_aux_loss_coef = config.router_aux_loss_coef
|
3419 |
+
# self.num_experts = config.num_experts
|
3420 |
+
# self.num_experts_per_tok = config.num_experts_per_tok
|
3421 |
+
self.max_thoughts = config.max_thoughts
|
3422 |
+
self.merged_lm_and_talk_heads = config.merged_lm_and_talk_heads
|
3423 |
+
self.use_concat_talk_head = config.use_concat_talk_head
|
3424 |
+
self.use_shallow_talk = config.use_shallow_talk
|
3425 |
+
self.use_complex_talk_head = config.use_complex_talk_head
|
3426 |
+
self.use_weighted_talk_head = config.use_weighted_talk_head
|
3427 |
+
# the weighted head will output a single value, so it can't be passed to the lm head
|
3428 |
+
assert not (self.use_weighted_talk_head and self.use_shallow_talk)
|
3429 |
+
|
3430 |
+
self.n_ahead = 1
|
3431 |
+
self.n_ahead_talk = 1
|
3432 |
+
self.n_passes = 1
|
3433 |
+
self.n_tokens_print = 1
|
3434 |
+
self.gradient_accumulation_steps = 1
|
3435 |
+
self.training_steps = 0
|
3436 |
+
self.tokenizer = AutoTokenizer.from_pretrained("LeroyDyer/Mixtral_AI_Cyber_Q")
|
3437 |
+
self.start_token_id = None
|
3438 |
+
self.end_token_id = None
|
3439 |
+
self.rm_initialized = False
|
3440 |
+
self.residual_talk_head = True
|
3441 |
+
self.thought_init_std_scale = 1e-2
|
3442 |
+
|
3443 |
+
self.final_only_mode = False
|
3444 |
+
self.first_and_last_mode = True
|
3445 |
+
self.first_only = False
|
3446 |
+
self.original_loss_weight = 0.5
|
3447 |
+
|
3448 |
+
self.cumulative_residual = False
|
3449 |
+
self.clever_residual = False
|
3450 |
+
self.skip_residual = False
|
3451 |
+
self.no_residual = True
|
3452 |
+
|
3453 |
+
self.optimize_lm_head_only_at_start = False
|
3454 |
+
self.optimize_model_only_at_start = False
|
3455 |
+
|
3456 |
+
if self.optimize_model_only_at_start:
|
3457 |
+
raise NotImplementedError
|
3458 |
+
self.train_only_thinking_embedding = False
|
3459 |
+
self.weighted_embeddings = False
|
3460 |
+
self.use_start_thought_token = True
|
3461 |
+
self.use_end_thought_token = True
|
3462 |
+
self.initialize_thought_embedding_to_normal = False
|
3463 |
+
self.initial_start_token = "---"
|
3464 |
+
self.initial_end_token = "---"
|
3465 |
+
self.output_logits_at_the_end = True
|
3466 |
+
|
3467 |
+
self.wandb_enabled = False
|
3468 |
+
self.gumbel_temperature = 0.001
|
3469 |
+
|
3470 |
+
self.use_policy_loss = True
|
3471 |
+
self.include_policy_loss = True
|
3472 |
+
self.trice_mode = True
|
3473 |
+
self.remove_negative_rewards = True
|
3474 |
+
self.use_policy_loss_for_end_thought = True
|
3475 |
+
|
3476 |
+
self.base_original_mode = False
|
3477 |
+
self.original_mode = False
|
3478 |
+
|
3479 |
+
self.thought_prefix = "(Let's think step by step"
|
3480 |
+
self.tokenized_thought_prefix = None
|
3481 |
+
self.log_dict = defaultdict(int)
|
3482 |
+
self.eval_log_dict = defaultdict(int)
|
3483 |
+
self.loss_mean = loss_mean
|
3484 |
+
|
3485 |
+
self.start_embedding = nn.Parameter(torch.zeros(2, self.model.config.hidden_size))
|
3486 |
+
self.end_embedding = nn.Parameter(torch.zeros(2, self.model.config.hidden_size))
|
3487 |
+
|
3488 |
+
self.policy_loss_beta = 1e6
|
3489 |
+
self.embedding_scale = 1e2
|
3490 |
+
self.temperature = nn.Parameter(torch.ones(1))
|
3491 |
+
self.max_temperature = config.max_temperature
|
3492 |
+
self.reinforce_temperature = 3
|
3493 |
+
self.base_loss_beta = 1
|
3494 |
+
self.thinking_usefulness_head = nn.Linear(self.model.config.hidden_size, 1)
|
3495 |
+
self.thinking_threshold = 0.5
|
3496 |
+
self.thinking_usefulness_loss_weight = 1e-2
|
3497 |
+
|
3498 |
+
# Not used in the paper:
|
3499 |
+
self.use_thought_prefix = False
|
3500 |
+
self.use_reparam_for_thought_embeddings = False
|
3501 |
+
self.use_upper_triangular = False
|
3502 |
+
self.subtract_mean_reward = False
|
3503 |
+
self.comparison_mode = False
|
3504 |
+
self.gumbel_detach = False
|
3505 |
+
|
3506 |
+
# For visualization
|
3507 |
+
self.eval_mode = False
|
3508 |
+
|
3509 |
+
num_talk = 1
|
3510 |
+
talk_input_dim = config.hidden_size if not self.use_concat_talk_head else config.hidden_size * 2
|
3511 |
+
if self.use_weighted_talk_head:
|
3512 |
+
talk_output_dim = 1
|
3513 |
+
else:
|
3514 |
+
talk_output_dim = config.hidden_size if self.use_shallow_talk else config.vocab_size
|
3515 |
+
|
3516 |
+
if not self.merged_lm_and_talk_heads:
|
3517 |
+
if self.use_complex_talk_head:
|
3518 |
+
self.talk_head = nn.ModuleList([nn.Sequential(
|
3519 |
+
nn.Linear(talk_input_dim, config.hidden_size),
|
3520 |
+
nn.ReLU(),
|
3521 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
3522 |
+
nn.ReLU(),
|
3523 |
+
nn.Linear(config.hidden_size, talk_output_dim, bias=False)
|
3524 |
+
)])
|
3525 |
+
else:
|
3526 |
+
self.talk_head = nn.ModuleList([nn.Sequential(
|
3527 |
+
nn.Linear(talk_input_dim, talk_output_dim, bias=False)
|
3528 |
+
)])
|
3529 |
+
|
3530 |
+
self.apply(self._init_weights)
|
3531 |
+
|
3532 |
+
# Add dropout regularization
|
3533 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
3534 |
+
|
3535 |
+
# Initialize weights and apply final processing
|
3536 |
+
self.post_init()
|
3537 |
+
|
3538 |
+
def get_input_embeddings(self):
|
3539 |
+
return self.model.embed_tokens
|
3540 |
+
|
3541 |
+
def set_input_embeddings(self, value):
|
3542 |
+
self.model.embed_tokens = value
|
3543 |
+
|
3544 |
+
def get_output_embeddings(self):
|
3545 |
+
return self.lm_head
|
3546 |
+
|
3547 |
+
def set_output_embeddings(self, new_embeddings):
|
3548 |
+
self.lm_head = new_embeddings
|
3549 |
+
|
3550 |
+
def set_decoder(self, decoder):
|
3551 |
+
self.model = decoder
|
3552 |
+
|
3553 |
+
def get_decoder(self):
|
3554 |
+
return self.model
|
3555 |
+
|
3556 |
+
def _init_weights(self, module):
|
3557 |
+
if isinstance(module, nn.Linear):
|
3558 |
+
nn.init.xavier_uniform_(module.weight)
|
3559 |
+
if module.bias is not None:
|
3560 |
+
nn.init.constant_(module.bias, 0)
|
3561 |
+
elif isinstance(module, nn.Embedding):
|
3562 |
+
nn.init.xavier_uniform_(module.weight)
|
3563 |
+
|
3564 |
+
@torch.no_grad()
|
3565 |
+
def infer(
|
3566 |
+
self,
|
3567 |
+
input_ids: torch.LongTensor,
|
3568 |
+
attention_mask: Optional[torch.Tensor] = None,
|
3569 |
+
position_ids: Optional[torch.LongTensor] = None,
|
3570 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
3571 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
3572 |
+
use_cache: Optional[bool] = None,
|
3573 |
+
output_attentions: Optional[bool] = None,
|
3574 |
+
output_hidden_states: Optional[bool] = None,
|
3575 |
+
return_dict: Optional[bool] = None,
|
3576 |
+
):
|
3577 |
+
batch_size, seq_len = input_ids.shape
|
3578 |
+
|
3579 |
+
# Save the original input_ids and attention_mask for later use
|
3580 |
+
original_input_ids = input_ids.clone()
|
3581 |
+
original_attention_mask = attention_mask.clone() if attention_mask is not None else None
|
3582 |
+
|
3583 |
+
# Append the start thought token to the input sequence
|
3584 |
+
start_thought_token_id = self.tokenizer.convert_tokens_to_ids("<|startthought|>")
|
3585 |
+
input_ids = torch.cat([input_ids, torch.tensor([[start_thought_token_id]] * batch_size).to(input_ids.device)], dim=-1)
|
3586 |
+
seq_len += 1
|
3587 |
+
|
3588 |
+
# Update the attention mask
|
3589 |
+
if attention_mask is not None:
|
3590 |
+
attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1)
|
3591 |
+
|
3592 |
+
# Generate the continuation
|
3593 |
+
continuation_length = self.n_ahead - 2
|
3594 |
+
new_key_values = past_key_values
|
3595 |
+
|
3596 |
+
# Initialize next_token_id with a default value
|
3597 |
+
next_token_id = torch.zeros(batch_size, dtype=torch.long).to(input_ids.device)
|
3598 |
+
|
3599 |
+
start_time = time.time()
|
3600 |
+
for continuation_idx in range(continuation_length):
|
3601 |
+
outputs = self.model(
|
3602 |
+
input_ids=input_ids if continuation_idx == 0 else next_token_id.unsqueeze(-1).to(input_ids.device),
|
3603 |
+
attention_mask=attention_mask,
|
3604 |
+
position_ids=position_ids,
|
3605 |
+
past_key_values=new_key_values,
|
3606 |
+
inputs_embeds=inputs_embeds,
|
3607 |
+
use_cache=True,
|
3608 |
+
output_attentions=output_attentions,
|
3609 |
+
output_hidden_states=output_hidden_states,
|
3610 |
+
return_dict=return_dict,
|
3611 |
+
)
|
3612 |
+
new_key_values = outputs.past_key_values
|
3613 |
+
|
3614 |
+
hidden_states = outputs[0]
|
3615 |
+
|
3616 |
+
logits = self.lm_head(hidden_states)
|
3617 |
+
logits = logits[:, -1, :] # Only consider the last token
|
3618 |
+
|
3619 |
+
# Apply Gumbel-Softmax to the logits
|
3620 |
+
next_token_logits = F.gumbel_softmax(logits, tau=self.gumbel_temperature, hard=True, dim=-1)
|
3621 |
+
next_token_id = torch.argmax(next_token_logits, dim=-1)
|
3622 |
+
|
3623 |
+
# Append the generated token to the input sequence
|
3624 |
+
# input_ids = torch.cat([input_ids, next_token_id.unsqueeze(-1).to(input_ids.device)], dim=-1)
|
3625 |
+
seq_len += 1
|
3626 |
+
|
3627 |
+
# Update the attention mask
|
3628 |
+
if attention_mask is not None:
|
3629 |
+
attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1)
|
3630 |
+
|
3631 |
+
# Append the end thought token to the input sequence
|
3632 |
+
end_thought_token_id = self.tokenizer.convert_tokens_to_ids("<|endthought|>")
|
3633 |
+
input_ids = torch.cat([input_ids, torch.tensor([[end_thought_token_id]] * batch_size).to(input_ids.device)], dim=-1)
|
3634 |
+
seq_len += 1
|
3635 |
+
|
3636 |
+
# Update the attention mask
|
3637 |
+
if attention_mask is not None:
|
3638 |
+
attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1)
|
3639 |
+
|
3640 |
+
# Get the hidden states before and after the thought
|
3641 |
+
outputs_before = self.model(
|
3642 |
+
input_ids=original_input_ids,
|
3643 |
+
attention_mask=original_attention_mask,
|
3644 |
+
position_ids=position_ids,
|
3645 |
+
past_key_values=past_key_values,
|
3646 |
+
inputs_embeds=inputs_embeds,
|
3647 |
+
use_cache=use_cache,
|
3648 |
+
output_attentions=output_attentions,
|
3649 |
+
output_hidden_states=output_hidden_states,
|
3650 |
+
return_dict=return_dict,
|
3651 |
+
)
|
3652 |
+
hidden_states_before = outputs_before[0][:, -1:, :]
|
3653 |
+
|
3654 |
+
# two new tokens: last continuation token and end thought token
|
3655 |
+
outputs_after = self.model(
|
3656 |
+
input_ids=torch.cat([next_token_id.unsqueeze(-1).to(input_ids.device), torch.tensor([[end_thought_token_id]] * batch_size).to(input_ids.device)], dim=-1),
|
3657 |
+
attention_mask=torch.cat([attention_mask[:, -1:], torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1),
|
3658 |
+
position_ids=position_ids,
|
3659 |
+
past_key_values=new_key_values,
|
3660 |
+
inputs_embeds=inputs_embeds,
|
3661 |
+
use_cache=use_cache,
|
3662 |
+
output_attentions=output_attentions,
|
3663 |
+
output_hidden_states=output_hidden_states,
|
3664 |
+
return_dict=return_dict,
|
3665 |
+
)
|
3666 |
+
hidden_states_after = outputs_after[0][:, -1:, :]
|
3667 |
+
|
3668 |
+
# Apply the talk head to get the mixing weight
|
3669 |
+
mixing_weight = self.talk_head[0](torch.cat([hidden_states_before, hidden_states_after], dim=-1))
|
3670 |
+
|
3671 |
+
# Apply the mixing weight to the hidden states
|
3672 |
+
mixed_hidden_states = (1 - mixing_weight) * hidden_states_before + mixing_weight * hidden_states_after
|
3673 |
+
|
3674 |
+
# Apply the language model head to get the final logits
|
3675 |
+
logits = self.lm_head(mixed_hidden_states)
|
3676 |
+
return logits
|
3677 |
+
|
3678 |
+
@torch.no_grad()
|
3679 |
+
def generate(
|
3680 |
+
self,
|
3681 |
+
input_ids: torch.LongTensor = torch.LongTensor(),
|
3682 |
+
attention_mask: Optional[torch.Tensor] = None,
|
3683 |
+
max_new_tokens: Optional[int] = None,
|
3684 |
+
temperature: float = 1.1,
|
3685 |
+
**kwargs,
|
3686 |
+
):
|
3687 |
+
if isinstance(input_ids, str):
|
3688 |
+
input_ids = self.tokenizer(input_ids, return_tensors="pt").input_ids
|
3689 |
+
|
3690 |
+
if attention_mask is None:
|
3691 |
+
# Create a default attention mask if not provided
|
3692 |
+
attention_mask = torch.ones_like(input_ids)
|
3693 |
+
|
3694 |
+
from .generate import generate
|
3695 |
+
return generate(self, input_ids, attention_mask=attention_mask, max_new_tokens=max_new_tokens, temperature=temperature, **kwargs)
|
3696 |
+
|
3697 |
+
@add_start_docstrings_to_model_forward(QUIET_INPUTS_DOCSTRING)
|
3698 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
3699 |
+
def forward(
|
3700 |
+
self,
|
3701 |
+
input_ids: torch.LongTensor = None,
|
3702 |
+
attention_mask: Optional[torch.Tensor] = None,
|
3703 |
+
position_ids: Optional[torch.LongTensor] = None,
|
3704 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
3705 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
3706 |
+
labels: Optional[torch.LongTensor] = None,
|
3707 |
+
use_cache: Optional[bool] = None,
|
3708 |
+
output_attentions: Optional[bool] = None,
|
3709 |
+
output_hidden_states: Optional[bool] = None,
|
3710 |
+
return_dict: Optional[bool] = None,
|
3711 |
+
max_new_tokens: Optional[int] = None,
|
3712 |
+
temperature: Optional[float] = None,
|
3713 |
+
temperature_last: Optional[float] = None,
|
3714 |
+
dynamic_temperature: Optional[float] = None,
|
3715 |
+
dynatemp_low: Optional[float] = None,
|
3716 |
+
dynatemp_high: Optional[float] = None,
|
3717 |
+
dynatemp_exponent: Optional[float] = None,
|
3718 |
+
smoothing_factor: Optional[float] = None,
|
3719 |
+
smoothing_curve: Optional[str] = None,
|
3720 |
+
top_p: Optional[float] = None,
|
3721 |
+
min_p: Optional[float] = None,
|
3722 |
+
top_k: Optional[int] = None,
|
3723 |
+
repetition_penalty: Optional[float] = None,
|
3724 |
+
presence_penalty: Optional[float] = None,
|
3725 |
+
frequency_penalty: Optional[float] = None,
|
3726 |
+
repetition_penalty_range: Optional[int] = None,
|
3727 |
+
typical_p: Optional[float] = None,
|
3728 |
+
tfs: Optional[float] = None,
|
3729 |
+
top_a: Optional[float] = None,
|
3730 |
+
guidance_scale: Optional[float] = None,
|
3731 |
+
penalty_alpha: Optional[float] = None,
|
3732 |
+
mirostat_mode: Optional[int] = None,
|
3733 |
+
mirostat_tau: Optional[float] = None,
|
3734 |
+
mirostat_eta: Optional[float] = None,
|
3735 |
+
do_sample: Optional[bool] = None,
|
3736 |
+
encoder_repetition_penalty: Optional[float] = None,
|
3737 |
+
no_repeat_ngram_size: Optional[int] = None,
|
3738 |
+
sampler_priority: Optional[List[str]] = None,
|
3739 |
+
negative_prompt_ids: Optional[List[int]] = None,
|
3740 |
+
prompt_lookup_num_tokens: Optional[int] = None,
|
3741 |
+
epsilon_cutoff: Optional[float] = None,
|
3742 |
+
eta_cutoff: Optional[float] = None,
|
3743 |
+
max_length: Optional[int] = None,
|
3744 |
+
suppress_tokens: Optional[List[int]] = None,
|
3745 |
+
synced_gpus: Optional[bool] = None,
|
3746 |
+
eos_token_id: Optional[List[int]] = None,
|
3747 |
+
stopping_criteria: Optional[transformers.StoppingCriteriaList] = None,
|
3748 |
+
logits_processor: Optional[transformers.LogitsProcessorList] = None,
|
3749 |
+
inputs: Optional[torch.LongTensor] = None,
|
3750 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
3751 |
+
r"""
|
3752 |
+
Args:
|
3753 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
3754 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
3755 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
3756 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
3757 |
+
Returns:
|
3758 |
+
Example:
|
3759 |
+
```python
|
3760 |
+
>>> from transformers import AutoTokenizer, QuietForCausalLM
|
3761 |
+
>>> model = QuietForCausalLM.from_pretrained("quietai/Quiet-7B-v0.1")
|
3762 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("quietai/Quiet-7B-v0.1")
|
3763 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
3764 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
3765 |
+
>>> # Generate
|
3766 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
3767 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
3768 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
3769 |
+
```"""
|
3770 |
+
|
3771 |
+
if not self.training:
|
3772 |
+
n_ahead_talk_to_restore = self.n_ahead_talk
|
3773 |
+
n_passes_to_restore = self.n_passes
|
3774 |
+
self.n_ahead_talk = 1
|
3775 |
+
self.n_passes = 1
|
3776 |
+
|
3777 |
+
# aux_loss = None
|
3778 |
+
# output_router_logits = output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
3779 |
+
# if output_router_logits:
|
3780 |
+
# router_logits = outputs.router_logits if return_dict else outputs[-1]
|
3781 |
+
# if router_logits is not None:
|
3782 |
+
# aux_loss = load_balancing_loss_func(
|
3783 |
+
# router_logits,
|
3784 |
+
# self.num_experts,
|
3785 |
+
# self.num_experts_per_tok,
|
3786 |
+
# attention_mask,
|
3787 |
+
# )
|
3788 |
+
# if labels is not None:
|
3789 |
+
# loss += self.router_aux_loss_coef * aux_loss.to(loss.device)
|
3790 |
+
|
3791 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
3792 |
+
output_hidden_states = (
|
3793 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
3794 |
+
)
|
3795 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
3796 |
+
|
3797 |
+
assert self.cumulative_residual or self.clever_residual or self.skip_residual or self.no_residual
|
3798 |
+
assert not (self.skip_residual and self.use_policy_loss)
|
3799 |
+
|
3800 |
+
if self.tokenized_thought_prefix is None and self.use_thought_prefix:
|
3801 |
+
self.tokenized_thought_prefix = self.tokenizer(self.thought_prefix, return_tensors="pt", add_special_tokens=False)["input_ids"]
|
3802 |
+
|
3803 |
+
def apply_head(head, states, detach=False):
|
3804 |
+
if detach:
|
3805 |
+
head_weight = head.weight.detach()
|
3806 |
+
else:
|
3807 |
+
head_weight = head.weight
|
3808 |
+
head_weight = head_weight.to(states.device)
|
3809 |
+
return (head_weight @ states.transpose(-1, -2)).transpose(-1, -2).contiguous()
|
3810 |
+
|
3811 |
+
def idx_if_sequential(head, idx=0):
|
3812 |
+
if isinstance(head, nn.Sequential) or isinstance(head, nn.ModuleList):
|
3813 |
+
return idx_if_sequential(head[idx], idx=idx)
|
3814 |
+
return head
|
3815 |
+
|
3816 |
+
def none_repeat_interleave(x, n):
|
3817 |
+
if x is None:
|
3818 |
+
return x
|
3819 |
+
return x.repeat_interleave(n, dim=0)
|
3820 |
+
|
3821 |
+
if self.n_passes > 1:
|
3822 |
+
input_ids = none_repeat_interleave(input_ids, self.n_passes)
|
3823 |
+
attention_mask = none_repeat_interleave(attention_mask, self.n_passes)
|
3824 |
+
position_ids = none_repeat_interleave(position_ids, self.n_passes)
|
3825 |
+
inputs_embeds = none_repeat_interleave(inputs_embeds, self.n_passes)
|
3826 |
+
labels = none_repeat_interleave(labels, self.n_passes)
|
3827 |
+
if past_key_values is not None:
|
3828 |
+
past_key_values = [none_repeat_interleave(p, self.n_passes) for p in past_key_values]
|
3829 |
+
cur_token_indices = torch.arange(input_ids.shape[1], device=input_ids.device)
|
3830 |
+
|
3831 |
+
self.tokenizer_has_start_thought_token = True
|
3832 |
+
self.tokenizer_has_end_thought_token = True
|
3833 |
+
if self.start_token_id is None:
|
3834 |
+
self.start_token_id = self.tokenizer.convert_tokens_to_ids("<|startthought|>")
|
3835 |
+
if self.start_token_id == 0:
|
3836 |
+
self.start_token_id = self.tokenizer.bos_token_id
|
3837 |
+
self.tokenizer_has_start_thought_token = False
|
3838 |
+
elif self.use_start_thought_token:
|
3839 |
+
# base_start_id = self.tokenizer.convert_tokens_to_ids(self.initial_start_token)
|
3840 |
+
base_start_id = self.tokenizer.encode(self.initial_start_token, add_special_tokens=False)[0]
|
3841 |
+
if self.initialize_thought_embedding_to_normal:
|
3842 |
+
self.start_embedding.data = torch.zeros_like(self.start_embedding.data)
|
3843 |
+
else:
|
3844 |
+
self.start_embedding.data[0] = self.model.embed_tokens.weight.data[base_start_id].clone().detach() / self.embedding_scale
|
3845 |
+
self.start_embedding.data[1] = torch.log(self.model.embed_tokens.weight.data.std(dim=0) * self.thought_init_std_scale / self.embedding_scale)
|
3846 |
+
if self.end_token_id is None:
|
3847 |
+
self.end_token_id = self.tokenizer.convert_tokens_to_ids("<|endthought|>")
|
3848 |
+
if self.end_token_id == 0:
|
3849 |
+
self.end_token_id = self.tokenizer.eos_token_id
|
3850 |
+
self.tokenizer_has_end_thought_token = False
|
3851 |
+
elif self.use_end_thought_token:
|
3852 |
+
# base_end_id = self.tokenizer.convert_tokens_to_ids(self.initial_end_token)
|
3853 |
+
base_end_id = self.tokenizer.encode(self.initial_end_token, add_special_tokens=False)[0]
|
3854 |
+
if self.initialize_thought_embedding_to_normal:
|
3855 |
+
self.end_embedding.data = torch.zeros_like(self.end_embedding.data)
|
3856 |
+
else:
|
3857 |
+
self.end_embedding.data[0] = self.model.embed_tokens.weight.data[base_end_id].clone().detach() / self.embedding_scale
|
3858 |
+
self.end_embedding.data[1] = torch.log(self.model.embed_tokens.weight.data.std(dim=0) * self.thought_init_std_scale / self.embedding_scale)
|
3859 |
+
|
3860 |
+
if not self.rm_initialized and (self.n_ahead > 1 or not self.base_original_mode):
|
3861 |
+
self.rm_initialized = True
|
3862 |
+
if not self.use_shallow_talk:
|
3863 |
+
head = self.talk_head[0]
|
3864 |
+
cur_head = head[-1] if isinstance(head, nn.Sequential) else head
|
3865 |
+
talk_input_dim = cur_head.weight.data.shape[1]
|
3866 |
+
talk_output_dim = 1 if self.use_weighted_talk_head else self.lm_head.weight.data.shape[0]
|
3867 |
+
cur_head.weight.data = torch.zeros(talk_output_dim, talk_input_dim, device=cur_head.weight.device, dtype=cur_head.weight.dtype)
|
3868 |
+
else:
|
3869 |
+
# convert to identity transform
|
3870 |
+
def lambda_transform(cur_head):
|
3871 |
+
# pdb.set_trace()
|
3872 |
+
if cur_head.weight.data.shape[0] != cur_head.weight.data.shape[1]:
|
3873 |
+
return torch.cat([
|
3874 |
+
torch.eye(
|
3875 |
+
cur_head.weight.data.shape[0],
|
3876 |
+
device=cur_head.weight.device,
|
3877 |
+
dtype=cur_head.weight.dtype
|
3878 |
+
),
|
3879 |
+
torch.zeros(
|
3880 |
+
cur_head.weight.data.shape[0],
|
3881 |
+
cur_head.weight.data.shape[1] - cur_head.weight.data.shape[0],
|
3882 |
+
device=cur_head.weight.device,
|
3883 |
+
dtype=cur_head.weight.dtype
|
3884 |
+
)], dim=1)
|
3885 |
+
return torch.eye(
|
3886 |
+
cur_head.weight.data.shape[0],
|
3887 |
+
device=cur_head.weight.device,
|
3888 |
+
dtype=cur_head.weight.dtype
|
3889 |
+
)
|
3890 |
+
if isinstance(self.talk_head[0], nn.Sequential):
|
3891 |
+
for cur_head in self.talk_head[0]:
|
3892 |
+
# if it has weights
|
3893 |
+
if hasattr(cur_head, "weight"):
|
3894 |
+
cur_head.weight.data = lambda_transform(cur_head)
|
3895 |
+
else:
|
3896 |
+
self.talk_head[-1].weight.data = lambda_transform(self.talk_head[0])
|
3897 |
+
|
3898 |
+
loss = None
|
3899 |
+
prev_rm_tokens = None
|
3900 |
+
cur_rm_tokens = None
|
3901 |
+
prev_rm_logits = None
|
3902 |
+
prev_sample_probs = None
|
3903 |
+
did_skip_sampling = None
|
3904 |
+
skip_sampling = None
|
3905 |
+
sample_probs = None
|
3906 |
+
hidden_states = None
|
3907 |
+
logits = None
|
3908 |
+
talk_kl_penalty = None
|
3909 |
+
rm_logits = None
|
3910 |
+
residual_logits = None
|
3911 |
+
probabilities_2d = None
|
3912 |
+
prev_probabilities_2d = None
|
3913 |
+
policy_reward = None
|
3914 |
+
logits_to_output = None
|
3915 |
+
batch_size, seq_len = input_ids.shape
|
3916 |
+
base_input_ids = input_ids.clone()
|
3917 |
+
loss_list = []
|
3918 |
+
dqn_loss_list = []
|
3919 |
+
sampled_token_history = []
|
3920 |
+
sample_probs_history = []
|
3921 |
+
action_loglikelihoods_list = []
|
3922 |
+
|
3923 |
+
temperature = self.temperature
|
3924 |
+
|
3925 |
+
if self.use_end_thought_token or self.use_start_thought_token:
|
3926 |
+
if not self.use_reparam_for_thought_embeddings:
|
3927 |
+
start_embedding = self.start_embedding[0].unsqueeze(0) * self.embedding_scale * temperature
|
3928 |
+
end_embedding = self.end_embedding[0].unsqueeze(0) * self.embedding_scale * temperature
|
3929 |
+
else:
|
3930 |
+
start_embedding = self.start_embedding * self.embedding_scale * temperature
|
3931 |
+
end_embedding = self.end_embedding * self.embedding_scale * temperature
|
3932 |
+
base_embeddings = self.model.embed_tokens.weight
|
3933 |
+
if self.train_only_thinking_embedding:
|
3934 |
+
base_embeddings = base_embeddings.detach()
|
3935 |
+
|
3936 |
+
# # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
3937 |
+
fwd_iters = 1 if self.original_mode else self.n_ahead + self.n_ahead_talk - 1
|
3938 |
+
for ahead_idx in range(fwd_iters):
|
3939 |
+
past_key_values_length = 0
|
3940 |
+
if past_key_values is not None:
|
3941 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
3942 |
+
if use_legacy_cache:
|
3943 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
3944 |
+
past_key_values_length = past_key_values.get_usable_length(seq_len)
|
3945 |
+
|
3946 |
+
if position_ids is None:
|
3947 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
3948 |
+
position_ids = torch.arange(
|
3949 |
+
past_key_values_length, seq_len + past_key_values_length, dtype=torch.long, device=device
|
3950 |
+
)
|
3951 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_len)
|
3952 |
+
else:
|
3953 |
+
position_ids = position_ids.view(-1, seq_len).long()
|
3954 |
+
|
3955 |
+
if inputs_embeds is None:
|
3956 |
+
contains_start = self.use_start_thought_token and (input_ids == self.start_token_id).any()
|
3957 |
+
contains_end = self.use_end_thought_token and (input_ids == self.end_token_id).any()
|
3958 |
+
contains_thought = contains_start or contains_end
|
3959 |
+
if contains_thought:
|
3960 |
+
thought_id = self.start_token_id if contains_start else self.end_token_id
|
3961 |
+
cur_thought_embedding = start_embedding if contains_start else end_embedding
|
3962 |
+
if self.use_reparam_for_thought_embeddings:
|
3963 |
+
inputs_embeds = torch.randn(batch_size, seq_len, self.model.config.hidden_size, device=input_ids.device, dtype=cur_thought_embedding.dtype)
|
3964 |
+
inputs_embeds = inputs_embeds.detach() * torch.exp(cur_thought_embedding[1]) + cur_thought_embedding[0]
|
3965 |
+
if contains_start:
|
3966 |
+
sampled_start = inputs_embeds.clone().detach()
|
3967 |
+
if contains_end:
|
3968 |
+
sampled_end = inputs_embeds.clone().detach()
|
3969 |
+
else:
|
3970 |
+
inputs_embeds = cur_thought_embedding.unsqueeze(0).repeat(batch_size, seq_len, 1)
|
3971 |
+
else:
|
3972 |
+
with torch.set_grad_enabled(not self.train_only_thinking_embedding):
|
3973 |
+
inputs_embeds = self.model.embed_tokens(input_ids)
|
3974 |
+
|
3975 |
+
if self.n_ahead != 1 or self.n_ahead_talk != 1 or self.comparison_mode:
|
3976 |
+
if attention_mask is None:
|
3977 |
+
base_attention_mask = torch.triu(torch.ones(seq_len, seq_len), diagonal=0).to(input_ids.device)
|
3978 |
+
base_attention_mask = base_attention_mask.view(1, 1, seq_len, seq_len)
|
3979 |
+
base_attention_mask = base_attention_mask.repeat(input_ids.shape[0], 1, 1, 1)
|
3980 |
+
attention_mask = base_attention_mask
|
3981 |
+
# breakpoint()
|
3982 |
+
elif attention_mask.dim() == 2:
|
3983 |
+
if seq_len + past_key_values_length != attention_mask.shape[-1]:
|
3984 |
+
# breakpoint()
|
3985 |
+
attention_mask = torch.cat(
|
3986 |
+
[torch.ones((attention_mask.shape[0], past_key_values_length), dtype=attention_mask.dtype, device=attention_mask.device), attention_mask],
|
3987 |
+
dim=-1
|
3988 |
+
)
|
3989 |
+
# # if the attention mask
|
3990 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
3991 |
+
attention_mask,
|
3992 |
+
(batch_size, seq_len),
|
3993 |
+
inputs_embeds,
|
3994 |
+
past_key_values_length,
|
3995 |
+
sliding_window=self.config.sliding_window,
|
3996 |
+
)
|
3997 |
+
|
3998 |
+
outputs = self.model(
|
3999 |
+
# input_ids=input_ids,
|
4000 |
+
attention_mask=attention_mask,
|
4001 |
+
position_ids=position_ids,
|
4002 |
+
past_key_values=past_key_values,
|
4003 |
+
inputs_embeds=inputs_embeds,
|
4004 |
+
use_cache=use_cache,
|
4005 |
+
output_attentions=output_attentions,
|
4006 |
+
output_hidden_states=output_hidden_states,
|
4007 |
+
# output_router_logits=output_router_logits,
|
4008 |
+
return_dict=return_dict,
|
4009 |
+
)
|
4010 |
+
|
4011 |
+
prev_hidden_states = hidden_states
|
4012 |
+
hidden_states = outputs[0]
|
4013 |
+
prev_rm_logits = rm_logits # for policy gradient
|
4014 |
+
prev_rm_tokens = cur_rm_tokens # for policy gradient
|
4015 |
+
|
4016 |
+
if ahead_idx == 0:
|
4017 |
+
hidden_states_lm = hidden_states
|
4018 |
+
logits = self.lm_head(hidden_states_lm)
|
4019 |
+
base_hidden_states = hidden_states.clone()
|
4020 |
+
initial_loss_logits = logits.clone()
|
4021 |
+
if self.optimize_lm_head_only_at_start or self.optimize_model_only_at_start:
|
4022 |
+
logits = logits.detach()
|
4023 |
+
base_hidden_states = base_hidden_states.detach()
|
4024 |
+
if self.optimize_model_only_at_start:
|
4025 |
+
hidden_states = hidden_states.detach()
|
4026 |
+
base_logits = logits.clone()
|
4027 |
+
else:
|
4028 |
+
talk_hidden_states = hidden_states
|
4029 |
+
if self.merged_lm_and_talk_heads:
|
4030 |
+
assert self.no_residual
|
4031 |
+
residual_logits = self.lm_head(hidden_states)
|
4032 |
+
talk_hidden_states = hidden_states
|
4033 |
+
else:
|
4034 |
+
if ahead_idx > self.n_ahead - 1:
|
4035 |
+
cur_base_hidden = torch.cat([
|
4036 |
+
base_hidden_states[..., ahead_idx - self.n_ahead + 1:, :],
|
4037 |
+
base_hidden_states[..., :ahead_idx - self.n_ahead + 1, :]
|
4038 |
+
], dim=-2)
|
4039 |
+
else:
|
4040 |
+
cur_base_hidden = base_hidden_states
|
4041 |
+
|
4042 |
+
if self.use_concat_talk_head:
|
4043 |
+
# concatenate the hidden states with the original hidden states
|
4044 |
+
head_input_hidden_states = torch.cat([cur_base_hidden, talk_hidden_states], dim=-1)
|
4045 |
+
else:
|
4046 |
+
head_input_hidden_states = talk_hidden_states
|
4047 |
+
|
4048 |
+
residual_logits = self.talk_head[0](head_input_hidden_states)
|
4049 |
+
if self.use_shallow_talk:
|
4050 |
+
residual_logits = apply_head(self.lm_head, residual_logits, detach=self.optimize_lm_head_only_at_start)
|
4051 |
+
residual_logits = residual_logits.to(logits.device)
|
4052 |
+
if self.use_weighted_talk_head:
|
4053 |
+
# combine the cur_base_hidden with the talk_hidden_states according to the weighted head
|
4054 |
+
residual_logits = cur_base_hidden * (1 - residual_logits) + talk_hidden_states * residual_logits
|
4055 |
+
residual_logits = apply_head(self.lm_head, residual_logits, detach=self.optimize_lm_head_only_at_start)
|
4056 |
+
|
4057 |
+
assert sum([self.cumulative_residual, self.clever_residual, self.skip_residual, self.no_residual]) == 1
|
4058 |
+
if self.clever_residual:
|
4059 |
+
if ahead_idx >= self.n_ahead - 1:
|
4060 |
+
# get the logits shifted according to the current talk ahead
|
4061 |
+
cur_base_logits = torch.cat([
|
4062 |
+
base_logits[..., ahead_idx - self.n_ahead + 1:, :],
|
4063 |
+
base_logits[..., :ahead_idx - self.n_ahead + 1, :]
|
4064 |
+
], dim=-2)
|
4065 |
+
if self.optimize_lm_head_only_at_start:
|
4066 |
+
cur_base_logits = cur_base_logits.detach()
|
4067 |
+
logits = cur_base_logits + residual_logits
|
4068 |
+
else:
|
4069 |
+
logits += residual_logits / self.n_ahead
|
4070 |
+
elif self.cumulative_residual:
|
4071 |
+
if self.residual_talk_head:
|
4072 |
+
if ahead_idx < self.n_ahead:
|
4073 |
+
logits += residual_logits
|
4074 |
+
else:
|
4075 |
+
# get the logits shifted according to the current talk ahead
|
4076 |
+
cur_base_logits = torch.cat([
|
4077 |
+
base_logits[..., ahead_idx - self.n_ahead + 1:, :],
|
4078 |
+
base_logits[..., :ahead_idx - self.n_ahead + 1, :]
|
4079 |
+
], dim=-2)
|
4080 |
+
if self.optimize_lm_head_only_at_start:
|
4081 |
+
cur_base_logits = cur_base_logits.detach()
|
4082 |
+
logits = cur_base_logits + residual_logits
|
4083 |
+
else:
|
4084 |
+
if ahead_idx < self.n_ahead:
|
4085 |
+
logits += residual_logits
|
4086 |
+
else:
|
4087 |
+
logits = residual_logits
|
4088 |
+
elif self.skip_residual:
|
4089 |
+
if ahead_idx >= self.n_ahead:
|
4090 |
+
# get the logits shifted according to the current talk ahead
|
4091 |
+
cur_base_logits = torch.cat([
|
4092 |
+
base_logits[..., ahead_idx - self.n_ahead + 1:, :],
|
4093 |
+
base_logits[..., :ahead_idx - self.n_ahead + 1, :]
|
4094 |
+
], dim=-2)
|
4095 |
+
if self.optimize_lm_head_only_at_start:
|
4096 |
+
cur_base_logits = cur_base_logits.detach()
|
4097 |
+
logits = cur_base_logits
|
4098 |
+
elif self.no_residual:
|
4099 |
+
logits = residual_logits
|
4100 |
+
else:
|
4101 |
+
logits = base_logits + residual_logits
|
4102 |
+
|
4103 |
+
attempted = False
|
4104 |
+
talk_loss_list = []
|
4105 |
+
if self.original_mode or (self.n_ahead == 1) or (self.comparison_mode and ahead_idx == 0):# or (self.optimize_lm_head_only_at_start and ahead_idx == 0):
|
4106 |
+
loss = None
|
4107 |
+
attempted = True
|
4108 |
+
|
4109 |
+
if labels is not None:
|
4110 |
+
for shift_amount in range(self.n_ahead_talk):
|
4111 |
+
# Shift so that tokens < n predict n
|
4112 |
+
# ab[cde]f
|
4113 |
+
# abc[def]
|
4114 |
+
if ahead_idx == 0 and self.optimize_lm_head_only_at_start:
|
4115 |
+
loss_logits = initial_loss_logits
|
4116 |
+
else:
|
4117 |
+
loss_logits = logits
|
4118 |
+
shift_logits = loss_logits[..., shift_amount:-1, :].contiguous()
|
4119 |
+
shift_labels = labels[..., 1 + shift_amount:].contiguous()
|
4120 |
+
# Flatten the tokens
|
4121 |
+
loss_fct = CrossEntropyLoss(reduction="none")
|
4122 |
+
# print("Shift logits before:", shift_logits)
|
4123 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
4124 |
+
shift_labels = shift_labels.view(-1).clone()
|
4125 |
+
# print("shift logits after:", shift_logits)
|
4126 |
+
# Enable model parallelism
|
4127 |
+
shift_labels[shift_labels == self.tokenizer.pad_token_id] = -100
|
4128 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
4129 |
+
loss = loss_fct(shift_logits, shift_labels)
|
4130 |
+
if not self.comparison_mode and not (self.optimize_lm_head_only_at_start and (self.n_ahead + self.n_ahead_talk > 2)) or self.original_mode:
|
4131 |
+
loss_list.append(loss)
|
4132 |
+
talk_loss_list.append(nonzero_mean(loss).detach())
|
4133 |
+
|
4134 |
+
if not attempted or self.comparison_mode:
|
4135 |
+
rm_hidden_states = hidden_states
|
4136 |
+
# print("Magnitude of RM hidden states before RM head", rm_hidden_states.norm())
|
4137 |
+
rm_logits = apply_head(self.lm_head, rm_hidden_states, detach=self.optimize_lm_head_only_at_start)
|
4138 |
+
|
4139 |
+
# don't allow it to predict the thinking token
|
4140 |
+
if self.tokenizer_has_start_thought_token:
|
4141 |
+
rm_logits[..., self.start_token_id] = -1e10
|
4142 |
+
if self.tokenizer_has_end_thought_token:
|
4143 |
+
rm_logits[..., self.end_token_id] = -1e10
|
4144 |
+
probabilities = rm_logits
|
4145 |
+
if probabilities_2d is not None:
|
4146 |
+
prev_probabilities_2d = probabilities_2d.clone()
|
4147 |
+
probabilities_2d = probabilities.view(-1, probabilities.size(-1))
|
4148 |
+
|
4149 |
+
did_skip_sampling = skip_sampling
|
4150 |
+
skip_sampling = False
|
4151 |
+
if ahead_idx == 0 and self.use_start_thought_token:
|
4152 |
+
override_token = self.start_token_id
|
4153 |
+
elif self.use_thought_prefix and ahead_idx < self.tokenized_thought_prefix.shape[-1]:
|
4154 |
+
override_token = self.tokenized_thought_prefix[..., ahead_idx]
|
4155 |
+
elif ahead_idx == self.n_ahead - 2 and self.use_end_thought_token:
|
4156 |
+
override_token = self.end_token_id
|
4157 |
+
else:
|
4158 |
+
override_token = None
|
4159 |
+
if override_token is not None and self.n_ahead > 1:
|
4160 |
+
# always start with the start token
|
4161 |
+
probabilities_2d = torch.zeros_like(probabilities_2d)
|
4162 |
+
probabilities_2d[:, override_token] = 1.0
|
4163 |
+
skip_sampling = True
|
4164 |
+
elif ahead_idx >= self.n_ahead - 1:
|
4165 |
+
if labels is not None: # we're in the talk phase
|
4166 |
+
cur_talk_n = ahead_idx - (self.n_ahead - 1) + 1
|
4167 |
+
# print("Setting rm to labels", cur_talk_n, "during", ahead_idx)
|
4168 |
+
shift_labels = labels[..., cur_talk_n:].contiguous().to(probabilities_2d.device)
|
4169 |
+
padding = torch.full_like(
|
4170 |
+
labels[..., :cur_talk_n],
|
4171 |
+
self.tokenizer.pad_token_id,
|
4172 |
+
dtype=torch.long,
|
4173 |
+
device=shift_labels.device
|
4174 |
+
)
|
4175 |
+
new_rm_tokens = torch.cat(
|
4176 |
+
[shift_labels, padding],
|
4177 |
+
dim=-1
|
4178 |
+
)
|
4179 |
+
|
4180 |
+
# print((new_rm_tokens > self.vocab_size - 1).any().item())
|
4181 |
+
new_rm_tokens = torch.clamp(new_rm_tokens, 0, self.vocab_size - 1)
|
4182 |
+
|
4183 |
+
# Now safely convert rm tokens to one-hot
|
4184 |
+
probabilities_2d = F.one_hot(new_rm_tokens, num_classes=self.vocab_size).reshape(-1, self.vocab_size).to(probabilities_2d.dtype)
|
4185 |
+
else:
|
4186 |
+
continue
|
4187 |
+
temperature = self.gumbel_temperature if self.training else 0.001
|
4188 |
+
prev_sample_probs = sample_probs
|
4189 |
+
sample_probs = probabilities_2d
|
4190 |
+
if ahead_idx < self.n_ahead - 1 and not skip_sampling:
|
4191 |
+
probabilities_2d = F.gumbel_softmax(sample_probs, tau=temperature, hard=True, dim=-1)
|
4192 |
+
if self.gumbel_detach:
|
4193 |
+
probabilities_2d = probabilities_2d.detach()
|
4194 |
+
sampled_token_history.append(probabilities_2d.argmax(dim=-1).detach().cpu())
|
4195 |
+
# convert rm logits directly to embeddings
|
4196 |
+
contains_start = self.use_start_thought_token and (probabilities_2d[..., self.start_token_id].sum() > 0)
|
4197 |
+
contains_end = self.use_end_thought_token and (probabilities_2d[..., self.end_token_id].sum() > 0)
|
4198 |
+
contains_thought = contains_start or contains_end
|
4199 |
+
|
4200 |
+
|
4201 |
+
if not contains_thought:
|
4202 |
+
with torch.set_grad_enabled(not self.train_only_thinking_embedding):
|
4203 |
+
inputs_embeds = probabilities_2d @ (self.model.embed_tokens.weight.to(probabilities.device).to(probabilities.dtype) * temperature)
|
4204 |
+
else:
|
4205 |
+
thought_id = self.start_token_id if contains_start else self.end_token_id
|
4206 |
+
cur_thought_embedding = start_embedding if contains_start else end_embedding
|
4207 |
+
if self.use_reparam_for_thought_embeddings:
|
4208 |
+
inputs_embeds = torch.randn(batch_size, seq_len, self.model.config.hidden_size, device=input_ids.device, dtype=cur_thought_embedding.dtype)
|
4209 |
+
inputs_embeds = inputs_embeds * torch.exp(cur_thought_embedding[1]) + cur_thought_embedding[0]
|
4210 |
+
if contains_start:
|
4211 |
+
sampled_start = inputs_embeds.clone().detach()
|
4212 |
+
else:
|
4213 |
+
sampled_end = inputs_embeds.clone().detach()
|
4214 |
+
else:
|
4215 |
+
inputs_embeds = cur_thought_embedding.unsqueeze(0).repeat(batch_size, seq_len, 1)
|
4216 |
+
inputs_embeds = inputs_embeds.view(probabilities.size(0), probabilities.size(1), -1).to(self.model.embed_tokens.weight.dtype)
|
4217 |
+
inputs_embeds = inputs_embeds.view(probabilities.size(0), probabilities.size(1), -1).to(self.model.embed_tokens.weight.dtype)
|
4218 |
+
|
4219 |
+
# Predict the usefulness of thinking at each token position
|
4220 |
+
thinking_usefulness = self.thinking_usefulness_head(hidden_states).squeeze(-1)
|
4221 |
+
|
4222 |
+
# Apply a threshold to decide where to generate thoughts
|
4223 |
+
generate_thought_mask = thinking_usefulness > self.thinking_threshold
|
4224 |
+
|
4225 |
+
# Compute the regularization loss for thinking usefulness prediction
|
4226 |
+
thinking_usefulness_loss = torch.mean(thinking_usefulness * (1 - generate_thought_mask.float()))
|
4227 |
+
|
4228 |
+
# Add the regularization loss to the total loss
|
4229 |
+
if loss is not None:
|
4230 |
+
loss = loss + self.thinking_usefulness_loss_weight * thinking_usefulness_loss
|
4231 |
+
else:
|
4232 |
+
loss = self.thinking_usefulness_loss_weight * thinking_usefulness_loss
|
4233 |
+
|
4234 |
+
|
4235 |
+
if len(attention_mask.shape) == 2:
|
4236 |
+
breakpoint()
|
4237 |
+
else:
|
4238 |
+
original_attention = attention_mask[..., :attention_mask.shape[-2]]
|
4239 |
+
if self.use_upper_triangular:
|
4240 |
+
new_attention = original_attention
|
4241 |
+
else:
|
4242 |
+
original_attention = original_attention == attention_mask.max()
|
4243 |
+
# because eye isn't implemented for BF16, we need to handle the case
|
4244 |
+
if not attention_mask.dtype == torch.bfloat16:
|
4245 |
+
new_attention = torch.eye(
|
4246 |
+
seq_len, dtype=attention_mask.dtype, device=attention_mask.device
|
4247 |
+
)
|
4248 |
+
else:
|
4249 |
+
new_attention = torch.eye(
|
4250 |
+
seq_len, dtype=torch.float32, device=attention_mask.device
|
4251 |
+
).to(attention_mask.dtype)
|
4252 |
+
|
4253 |
+
new_attention = new_attention.view(1, 1, seq_len, seq_len).repeat(input_ids.shape[0], 1, 1, 1)
|
4254 |
+
new_attention = new_attention * original_attention
|
4255 |
+
new_attention[new_attention == 0] = attention_mask.min()
|
4256 |
+
new_attention[new_attention == 1] = attention_mask.max()
|
4257 |
+
attention_mask = torch.cat([attention_mask, new_attention], dim=-1)
|
4258 |
+
past_key_values = outputs.past_key_values
|
4259 |
+
position_ids = position_ids + 1
|
4260 |
+
|
4261 |
+
if labels is not None and (self.n_ahead > 1 or not self.base_original_mode):
|
4262 |
+
# Shift so that tokens < n predict n
|
4263 |
+
# logits: abcdef -> bcdef? -> cdef??
|
4264 |
+
# labels: abcdef -> ?bcdef -> ??cdef
|
4265 |
+
if ahead_idx == 0 and self.optimize_lm_head_only_at_start:
|
4266 |
+
loss_logits = initial_loss_logits
|
4267 |
+
else:
|
4268 |
+
loss_logits = logits
|
4269 |
+
shift_idx = 1 + max(0, ahead_idx - (self.n_ahead - 1))
|
4270 |
+
shift_logits = loss_logits[..., :-shift_idx, :].contiguous()
|
4271 |
+
shift_labels = labels[..., shift_idx:].contiguous()
|
4272 |
+
# Flatten the tokens
|
4273 |
+
loss_fct = CrossEntropyLoss(reduction="none")
|
4274 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
4275 |
+
shift_labels = shift_labels.view(-1)
|
4276 |
+
# Enable model parallelism
|
4277 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
4278 |
+
# if shift_labels.min() == self.tokenizer.pad_token_id:
|
4279 |
+
shift_labels = torch.where(shift_labels == self.tokenizer.pad_token_id, -100, shift_labels)
|
4280 |
+
unreduced_loss = loss_fct(shift_logits, shift_labels)
|
4281 |
+
# print("Loss:", unreduced_loss.item()) # Print the loss before checking for NaN values
|
4282 |
+
if torch.any(unreduced_loss != unreduced_loss):
|
4283 |
+
# pdb.set_trace()
|
4284 |
+
raise ValueError("NaN loss")
|
4285 |
+
unreduced_loss = unreduced_loss.reshape(logits.shape[0], -1)
|
4286 |
+
loss_list.append(unreduced_loss)
|
4287 |
+
|
4288 |
+
|
4289 |
+
if self.use_policy_loss and ahead_idx > 0 and (ahead_idx > 1 or not self.use_start_thought_token):
|
4290 |
+
# we treat the change in loss as the reward
|
4291 |
+
previous_loss = loss_list[-2]
|
4292 |
+
# for example, suppose n_ahead = 3 and n_ahead_talk = 2
|
4293 |
+
# note that we end at self.n_ahead + self.n_ahead_talk - 2
|
4294 |
+
# in this case, 5 - 2 = 3, so we end at ahead_idx = 3
|
4295 |
+
# we also predict the next token at ahead_idx = 2
|
4296 |
+
# when we get to ahead_idx = 2, we predict ahead
|
4297 |
+
# so we shift by 1
|
4298 |
+
# note that this is ahead_idx = n_ahead - 1
|
4299 |
+
# when we get to ahead_idx = 3, we predict ahead
|
4300 |
+
# so we shift by 2
|
4301 |
+
# note that this is ahead_idx = n_ahead
|
4302 |
+
if ahead_idx < self.n_ahead - 1:
|
4303 |
+
shift_amount = 0
|
4304 |
+
reward_scale = 1.0
|
4305 |
+
original_dqn_reward = torch.sign(previous_loss - unreduced_loss).detach() * reward_scale
|
4306 |
+
if self.first_and_last_mode:
|
4307 |
+
original_dqn_reward = original_dqn_reward * 0.0
|
4308 |
+
else:
|
4309 |
+
# logits vs cur_policy_shift_logits
|
4310 |
+
# let's look at rm_logits and prev_rm_logits
|
4311 |
+
shift_amount = max(0, ahead_idx - (self.n_ahead - 1))
|
4312 |
+
# let's say shift_amount = 2
|
4313 |
+
# abcdefg -> bcdefg? -> cdefg??
|
4314 |
+
# logits = [a b]c d e f[g]
|
4315 |
+
# labels = [a b c]d e f g
|
4316 |
+
cur_policy_shift_logits = initial_loss_logits[..., shift_amount:-1, :].contiguous().detach()
|
4317 |
+
cur_policy_shift_labels = labels[..., 1 + shift_amount:].contiguous()
|
4318 |
+
# Flatten the tokens
|
4319 |
+
cur_policy_loss_fct = CrossEntropyLoss(reduction="none")
|
4320 |
+
cur_policy_shift_logits = cur_policy_shift_logits.view(-1, self.config.vocab_size)
|
4321 |
+
cur_policy_shift_labels = cur_policy_shift_labels.view(-1).clone()
|
4322 |
+
# Enable model parallelism
|
4323 |
+
cur_policy_shift_labels[cur_policy_shift_labels == self.tokenizer.pad_token_id] = -100
|
4324 |
+
cur_policy_shift_labels = cur_policy_shift_labels.to(cur_policy_shift_labels.device)
|
4325 |
+
cur_policy_reward_base_loss = loss_fct(
|
4326 |
+
cur_policy_shift_logits, cur_policy_shift_labels.to(cur_policy_shift_logits.device)
|
4327 |
+
).reshape(logits.shape[0], -1)
|
4328 |
+
original_dqn_reward = cur_policy_reward_base_loss.detach() - unreduced_loss
|
4329 |
+
|
4330 |
+
if not did_skip_sampling:
|
4331 |
+
nonzero_indices = prev_probabilities_2d.nonzero()
|
4332 |
+
action_loglikelihoods = F.log_softmax(prev_sample_probs / self.reinforce_temperature, dim=-1)[nonzero_indices[:, 0], nonzero_indices[:, 1]]
|
4333 |
+
action_loglikelihoods_2d = action_loglikelihoods.reshape(batch_size, -1)[:, :-1 - shift_amount]
|
4334 |
+
action_loglikelihoods_list.append(action_loglikelihoods_2d)
|
4335 |
+
if policy_reward is None:
|
4336 |
+
policy_reward = original_dqn_reward[:, :-(self.n_ahead_talk - shift_amount)]
|
4337 |
+
else:
|
4338 |
+
if self.n_ahead_talk > shift_amount:
|
4339 |
+
added_reward = original_dqn_reward[:, :-(self.n_ahead_talk - shift_amount)]
|
4340 |
+
else:
|
4341 |
+
added_reward = original_dqn_reward
|
4342 |
+
policy_reward += added_reward
|
4343 |
+
|
4344 |
+
for action_loglikelihoods_2d in action_loglikelihoods_list:
|
4345 |
+
train_policy_reward = policy_reward
|
4346 |
+
|
4347 |
+
# discard rewards below the mean
|
4348 |
+
if self.trice_mode and self.n_passes > 1:
|
4349 |
+
batched_policy_reward = train_policy_reward.reshape(-1, self.n_passes, train_policy_reward.shape[-1])
|
4350 |
+
# average over the passes
|
4351 |
+
train_policy_reward = batched_policy_reward - batched_policy_reward.mean(dim=1, keepdim=True)
|
4352 |
+
train_policy_reward = train_policy_reward.reshape(-1, train_policy_reward.shape[-1])
|
4353 |
+
|
4354 |
+
if self.subtract_mean_reward:
|
4355 |
+
train_policy_reward = train_policy_reward - train_policy_reward.mean()
|
4356 |
+
if self.remove_negative_rewards:
|
4357 |
+
fixed_policy_reward = train_policy_reward.detach().clamp(min=0)
|
4358 |
+
else:
|
4359 |
+
fixed_policy_reward = train_policy_reward.detach()
|
4360 |
+
|
4361 |
+
# Normalize rewards
|
4362 |
+
fixed_policy_reward = (fixed_policy_reward - fixed_policy_reward.mean()) / (fixed_policy_reward.std() + 1e-8)
|
4363 |
+
actor_loss = -fixed_policy_reward * action_loglikelihoods_2d[:, :policy_reward.shape[-1]].to(policy_reward.device)
|
4364 |
+
if action_loglikelihoods_2d.mean() < -1e4 and not self.use_policy_loss_just_for_thoughts:
|
4365 |
+
# This will only happen when we force the next token to be the end of thought token
|
4366 |
+
break
|
4367 |
+
dqn_loss_list.append(actor_loss.mean())
|
4368 |
+
|
4369 |
+
if loss_list:
|
4370 |
+
if self.first_and_last_mode:
|
4371 |
+
loss = sum(
|
4372 |
+
self.loss_mean(loss_list[-(i + 1)]) for i in range(self.n_ahead_talk)
|
4373 |
+
) * (1 - self.original_loss_weight) / self.n_ahead_talk
|
4374 |
+
loss = loss + self.loss_mean(loss_list[0]) * self.original_loss_weight
|
4375 |
+
# Let's NaN out the others
|
4376 |
+
# e.g. if n_ahead_talk = 2 and the list is 5 long, we want to NaN out 1, 2 but keep 0, 3, 4
|
4377 |
+
for i in range(1, len(loss_list) - self.n_ahead_talk):
|
4378 |
+
loss_list[i] = loss_list[i] * math.nan
|
4379 |
+
elif self.first_only:
|
4380 |
+
loss = self.loss_mean(loss_list[0])
|
4381 |
+
elif self.final_only_mode:
|
4382 |
+
loss = sum(
|
4383 |
+
self.loss_mean(loss_list[-i]) for i in range(1, self.n_ahead_talk + 1)
|
4384 |
+
) / self.n_ahead_talk
|
4385 |
+
else:
|
4386 |
+
loss = None
|
4387 |
+
for i in range(len(loss_list)):
|
4388 |
+
cur_loss = self.loss_mean(loss_list[i])
|
4389 |
+
if loss is not None:
|
4390 |
+
loss = loss + cur_loss.to(loss.device)
|
4391 |
+
else:
|
4392 |
+
loss = cur_loss
|
4393 |
+
loss = loss / len(loss_list)
|
4394 |
+
loss = loss + thinking_usefulness_loss
|
4395 |
+
|
4396 |
+
base_loss_scale = 0.6
|
4397 |
+
policy_loss_scale = 0.03
|
4398 |
+
|
4399 |
+
loss = loss * base_loss_scale
|
4400 |
+
|
4401 |
+
if dqn_loss_list:
|
4402 |
+
dqn_loss = sum(dqn_loss_list) / len(dqn_loss_list)
|
4403 |
+
if self.include_policy_loss:
|
4404 |
+
if loss is not None:
|
4405 |
+
loss += dqn_loss * policy_loss_scale
|
4406 |
+
else:
|
4407 |
+
loss = dqn_loss * self.policy_loss_beta
|
4408 |
+
|
4409 |
+
if not return_dict:
|
4410 |
+
output = (logits,) + outputs[1:]
|
4411 |
+
return (loss,) + output if loss is not None else output
|
4412 |
+
|
4413 |
+
base_log_dict = {
|
4414 |
+
f"loss_{i}": nonzero_mean(loss_list[i]) for i in range(len(loss_list))
|
4415 |
+
}
|
4416 |
+
|
4417 |
+
if loss is not None:
|
4418 |
+
base_log_dict["loss_train"] = loss.item()
|
4419 |
+
|
4420 |
+
if not self.training:
|
4421 |
+
self.n_ahead_talk = n_ahead_talk_to_restore
|
4422 |
+
self.n_passes = n_passes_to_restore
|
4423 |
+
|
4424 |
+
del start_embedding
|
4425 |
+
del end_embedding
|
4426 |
+
torch.cuda.empty_cache()
|
4427 |
+
|
4428 |
+
|
4429 |
+
return CausalLMOutputWithPast(
|
4430 |
+
loss=loss if loss is not None else None,
|
4431 |
+
logits=(rm_logits if self.n_ahead > 1 else logits) if not self.output_logits_at_the_end else logits,
|
4432 |
+
past_key_values=outputs.past_key_values,
|
4433 |
+
hidden_states=outputs.hidden_states,
|
4434 |
+
attentions=outputs.attentions,
|
4435 |
+
)
|
4436 |
+
|
4437 |
+
|
4438 |
+
|
4439 |
+
def prepare_inputs_for_generation(
|
4440 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
4441 |
+
):
|
4442 |
+
# Omit tokens covered by past_key_values
|
4443 |
+
if past_key_values is not None:
|
4444 |
+
if isinstance(past_key_values, Cache):
|
4445 |
+
cache_length = past_key_values.get_seq_length()
|
4446 |
+
past_length = past_key_values.seen_tokens
|
4447 |
+
max_cache_length = past_key_values.get_max_length()
|
4448 |
+
else:
|
4449 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
4450 |
+
max_cache_length = None
|
4451 |
+
|
4452 |
+
# Keep only the unprocessed tokens:
|
4453 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
4454 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing inputs_embeds as
|
4455 |
+
# input)
|
4456 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
4457 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
4458 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
4459 |
+
# input_ids based on the past_length.
|
4460 |
+
elif past_length < input_ids.shape[1]:
|
4461 |
+
input_ids = input_ids[:, past_length:]
|
4462 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
4463 |
+
|
4464 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
4465 |
+
if (
|
4466 |
+
max_cache_length is not None
|
4467 |
+
and attention_mask is not None
|
4468 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
4469 |
+
):
|
4470 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
4471 |
+
|
4472 |
+
position_ids = kwargs.get("position_ids", None)
|
4473 |
+
if attention_mask is not None and position_ids is None:
|
4474 |
+
# create position_ids on the fly for batch generation
|
4475 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
4476 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
4477 |
+
if past_key_values:
|
4478 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
4479 |
+
|
4480 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
4481 |
+
if inputs_embeds is not None and past_key_values is None:
|
4482 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
4483 |
+
else:
|
4484 |
+
model_inputs = {"input_ids": input_ids}
|
4485 |
+
|
4486 |
+
model_inputs.update(
|
4487 |
+
{
|
4488 |
+
"position_ids": position_ids,
|
4489 |
+
"past_key_values": past_key_values,
|
4490 |
+
"use_cache": kwargs.get("use_cache"),
|
4491 |
+
"attention_mask": attention_mask,
|
4492 |
+
}
|
4493 |
+
)
|
4494 |
+
return model_inputs
|
4495 |
+
|
4496 |
+
@staticmethod
|
4497 |
+
def _reorder_cache(past_key_values, beam_idx):
|
4498 |
+
reordered_past = ()
|
4499 |
+
for layer_past in past_key_values:
|
4500 |
+
reordered_past += (
|
4501 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
4502 |
+
)
|
4503 |
+
return reordered_past
|
4504 |
+
|
4505 |
+
|
4506 |
+
|
4507 |
+
|
4508 |
+
@add_start_docstrings(
|
4509 |
+
"""
|
4510 |
+
The Quiet Model transformer with a sequence classification head on top (linear layer).
|
4511 |
+
[`QuietForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
4512 |
+
(e.g. GPT-2) do.
|
4513 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
4514 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
4515 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
4516 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
4517 |
+
each row of the batch).
|
4518 |
+
""",
|
4519 |
+
QUIET_START_DOCSTRING,
|
4520 |
+
)
|
4521 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Quiet, LLAMA->QUIET
|
4522 |
+
class QuietForSequenceClassification(QuietPreTrainedModel):
|
4523 |
+
def __init__(self, config):
|
4524 |
+
super().__init__(config)
|
4525 |
+
self.num_labels = config.num_labels
|
4526 |
+
self.model = QuietModel(config)
|
4527 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
4528 |
+
|
4529 |
+
# Initialize weights and apply final processing
|
4530 |
+
self.post_init()
|
4531 |
+
|
4532 |
+
def get_input_embeddings(self):
|
4533 |
+
return self.model.embed_tokens
|
4534 |
+
|
4535 |
+
def set_input_embeddings(self, value):
|
4536 |
+
self.model.embed_tokens = value
|
4537 |
+
|
4538 |
+
@add_start_docstrings_to_model_forward(QUIET_INPUTS_DOCSTRING)
|
4539 |
+
def forward(
|
4540 |
+
self,
|
4541 |
+
input_ids: torch.LongTensor = None,
|
4542 |
+
attention_mask: Optional[torch.Tensor] = None,
|
4543 |
+
position_ids: Optional[torch.LongTensor] = None,
|
4544 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
4545 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
4546 |
+
labels: Optional[torch.LongTensor] = None,
|
4547 |
+
use_cache: Optional[bool] = None,
|
4548 |
+
output_attentions: Optional[bool] = None,
|
4549 |
+
output_hidden_states: Optional[bool] = None,
|
4550 |
+
return_dict: Optional[bool] = None,
|
4551 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
4552 |
+
r"""
|
4553 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
4554 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
4555 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
4556 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
4557 |
+
"""
|
4558 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
4559 |
+
|
4560 |
+
transformer_outputs = self.model(
|
4561 |
+
input_ids,
|
4562 |
+
attention_mask=attention_mask,
|
4563 |
+
position_ids=position_ids,
|
4564 |
+
past_key_values=past_key_values,
|
4565 |
+
inputs_embeds=inputs_embeds,
|
4566 |
+
use_cache=use_cache,
|
4567 |
+
output_attentions=output_attentions,
|
4568 |
+
output_hidden_states=output_hidden_states,
|
4569 |
+
return_dict=return_dict,
|
4570 |
+
)
|
4571 |
+
hidden_states = transformer_outputs[0]
|
4572 |
+
logits = self.score(hidden_states)
|
4573 |
+
|
4574 |
+
if input_ids is not None:
|
4575 |
+
batch_size = input_ids.shape[0]
|
4576 |
+
else:
|
4577 |
+
batch_size = inputs_embeds.shape[0]
|
4578 |
+
|
4579 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
4580 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
4581 |
+
if self.config.pad_token_id is None:
|
4582 |
+
sequence_lengths = -1
|
4583 |
+
else:
|
4584 |
+
if input_ids is not None:
|
4585 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
4586 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
4587 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
4588 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
4589 |
+
else:
|
4590 |
+
sequence_lengths = -1
|
4591 |
+
|
4592 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
4593 |
+
|
4594 |
+
loss = None
|
4595 |
+
if labels is not None:
|
4596 |
+
labels = labels.to(logits.device)
|
4597 |
+
if self.config.problem_type is None:
|
4598 |
+
if self.num_labels == 1:
|
4599 |
+
self.config.problem_type = "regression"
|
4600 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
4601 |
+
self.config.problem_type = "single_label_classification"
|
4602 |
+
else:
|
4603 |
+
self.config.problem_type = "multi_label_classification"
|
4604 |
+
|
4605 |
+
if self.config.problem_type == "regression":
|
4606 |
+
loss_fct = MSELoss()
|
4607 |
+
if self.num_labels == 1:
|
4608 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
4609 |
+
else:
|
4610 |
+
loss = loss_fct(pooled_logits, labels)
|
4611 |
+
elif self.config.problem_type == "single_label_classification":
|
4612 |
+
loss_fct = CrossEntropyLoss()
|
4613 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
4614 |
+
elif self.config.problem_type == "multi_label_classification":
|
4615 |
+
loss_fct = BCEWithLogitsLoss()
|
4616 |
+
loss = loss_fct(pooled_logits, labels)
|
4617 |
+
if not return_dict:
|
4618 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
4619 |
+
return ((loss,) + output) if loss is not None else output
|
4620 |
+
|
4621 |
+
return SequenceClassifierOutputWithPast(
|
4622 |
+
loss=loss,
|
4623 |
+
logits=pooled_logits,
|
4624 |
+
past_key_values=transformer_outputs.past_key_values,
|
4625 |
+
hidden_states=transformer_outputs.hidden_states,
|
4626 |
+
attentions=transformer_outputs.attentions,
|
4627 |
+
)
|