|
from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline, AutoConfig, BitsAndBytesConfig,AutoConfig |
|
import time |
|
import torch |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
import random |
|
from datasets import load_dataset |
|
from transformers import TrainingArguments |
|
from trl import SFTTrainer |
|
from peft import LoraConfig |
|
|
|
from torch.nn import CrossEntropyLoss |
|
torch.autograd.set_detect_anomaly(True) |
|
random_seed = 42 |
|
torch.manual_seed(random_seed) |
|
random.seed(random_seed) |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
|
|
|
|
n_ahead_talk_global = 4 |
|
n_passes_global = 2 |
|
n_ahead_global = 8 |
|
n_examples = 0 |
|
|
|
def model_init(params): |
|
original = False |
|
if params is None: |
|
params = {} |
|
else: |
|
params = params.params |
|
|
|
n_ahead = params.get("n_ahead", n_ahead_global if not original else 1) |
|
n_ahead_talk = params.get("n_ahead_talk", n_ahead_talk_global if not original else 1) |
|
n_passes = params.get("n_passes", n_passes_global if not original else 1) |
|
gumbel_temperature = params.get("gumbel_temperature", 1) |
|
use_start_thought_token = params.get("use_start_thought_token", True) |
|
use_end_thought_token = params.get("use_end_thought_token", True) |
|
include_policy_loss = params.get("include_policy_loss", True) |
|
gumbel_detach = params.get("gumbel_detach", True) |
|
merged_talk_heads = params.get("merged_talk_heads", True) |
|
residual_think_head = params.get("residual_think_head", False) |
|
optimize_lm_head_only_at_start = params.get("optimize_lm_head_only_at_start", False) |
|
|
|
model_id = "LeroyDyer/SpydazWeb_AGI_MistralStar" |
|
tokenizer_id = model_id |
|
print("Loading model") |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32, |
|
max_thoughts=n_ahead + n_ahead_talk + 1, |
|
merged_talk_heads=merged_talk_heads, |
|
merged_lm_and_talk_heads=False, |
|
merged_lm_and_think_heads=True, |
|
use_concat_talk_head=True, |
|
use_shallow_think=True, |
|
use_shallow_talk=False, |
|
use_complex_think_head=False, |
|
use_complex_talk_head=True, |
|
use_weighted_talk_head=True, |
|
trust_remote_code=True, |
|
device_map="auto", |
|
) |
|
print("Loaded model") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, truncation=True, padding_side="right") |
|
tokenizer.pad_token_id = tokenizer.eos_token_id |
|
|
|
|
|
|
|
model.gumbel_detach = gumbel_detach |
|
model.include_policy_loss = include_policy_loss |
|
model.use_end_thought_token = use_end_thought_token |
|
model.use_start_thought_token = use_start_thought_token |
|
model.n_ahead = n_ahead |
|
model.n_ahead_talk = n_ahead_talk |
|
model.n_passes = n_passes |
|
model.residual_think_head = residual_think_head |
|
model.optimize_lm_head_only_at_start = optimize_lm_head_only_at_start |
|
model.gumbel_temperature = gumbel_temperature |
|
model.original_mode = original |
|
model.config_params = params |
|
return model |
|
|
|
model,tokenizer = model_init(None) |
|
|
|
|
|
|
|
|
|
peft_config = LoraConfig( |
|
r = 128, |
|
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", |
|
"gate_proj", "up_proj", "down_proj","lm_head", "embed_tokens"], |
|
lora_alpha = 32, |
|
lora_dropout = 0, |
|
bias = "none", |
|
use_dora=True, |
|
) |
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline, AutoConfig |
|
from datasets import load_dataset |
|
from transformers import TrainingArguments |
|
from trl import SFTTrainer |
|
from peft import LoraConfig |
|
|
|
|
|
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. |
|
|
|
### Instruction: |
|
{} |
|
|
|
### Input: |
|
{} |
|
|
|
### Response: |
|
{}""" |
|
EOS_TOKEN = tokenizer.eos_token |
|
def formatting_prompts_func(examples): |
|
instructions = examples["instruction"] |
|
inputs = examples["input"] |
|
outputs = examples["output"] |
|
texts = [] |
|
for instruction, input, output in zip(instructions, inputs, outputs): |
|
|
|
text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN |
|
texts.append(text) |
|
return { "text" : texts, } |
|
pass |
|
dataset = load_dataset("gate369/Alpaca-Star", split = "train[:2000]") |
|
dataset = dataset.shuffle(seed=3704) |
|
dataset = dataset.map(formatting_prompts_func, batched = True,) |
|
|
|
|
|
max_seq_length = 1024 |
|
training_args = TrainingArguments( |
|
output_dir="./out", |
|
num_train_epochs=3, |
|
per_device_train_batch_size=1, |
|
gradient_checkpointing=False, |
|
gradient_accumulation_steps=8, |
|
optim="lion_32bit", |
|
logging_steps=1, |
|
save_strategy="steps", |
|
max_steps=1000, |
|
bf16=True, |
|
tf32=False, |
|
learning_rate=6e-05, |
|
max_grad_norm=0.3, |
|
warmup_ratio=0.06, |
|
lr_scheduler_type="cosine", |
|
push_to_hub=False, |
|
|
|
) |
|
trainer = SFTTrainer( |
|
args=training_args, |
|
train_dataset=dataset, |
|
model=model, |
|
tokenizer=tokenizer, |
|
max_seq_length=max_seq_length, |
|
dataset_text_field="text", |
|
peft_config=peft_config, |
|
) |
|
trainer.train() |
|
|
|
|
|
tokenizer.save_pretrained("SFTTrainerModel") |
|
model.save_pretrained("SFTTrainerModel") |
|
|
|
|
|
import os |
|
import huggingface_hub |
|
from huggingface_hub import notebook_login |
|
from huggingface_hub import create_repo, HfApi |
|
from huggingface_hub import hf_hub_download |
|
from huggingface_hub import create_repo, HfApi |
|
from huggingface_hub import snapshot_download |
|
|
|
MODEL_NAME = "_Spydaz_Web_AI_MistralStar" |
|
Folderinput = "SFTTrainerModel" |
|
WRITE_TOKEN = "" |
|
username = "LeroyDyer" |
|
huggingface_hub.login(WRITE_TOKEN) |
|
api = HfApi(token=WRITE_TOKEN) |
|
|
|
api.create_repo( |
|
repo_id = f"{username}/{MODEL_NAME}", |
|
repo_type="model", |
|
exist_ok=True, |
|
) |
|
|
|
api.upload_folder( |
|
repo_id = f"{username}/{MODEL_NAME}", |
|
folder_path = Folderinput |
|
) |