LeonardoFettucciari's picture
End of training
18f274f verified
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: augmented_model_one_no_decay
    results: []

augmented_model_one_no_decay

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1143
  • Accuracy: 0.5579
  • F1: 0.5593
  • Precision: 0.5630
  • Recall: 0.5577

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-06
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.7227 0.2088 500 0.7164 0.7085 0.6956 0.7019 0.6986
0.669 0.4175 1000 0.7047 0.7168 0.7060 0.7126 0.7080
0.6417 0.6263 1500 0.7017 0.7146 0.7066 0.7115 0.7077
0.6274 0.8351 2000 0.6977 0.7220 0.7124 0.7172 0.7139
0.6082 1.0438 2500 0.6994 0.7212 0.7134 0.7167 0.7142
0.5766 1.2526 3000 0.7056 0.7168 0.7077 0.7113 0.7090
0.5789 1.4614 3500 0.7004 0.7220 0.7149 0.7185 0.7155
0.578 1.6701 4000 0.7030 0.7247 0.7151 0.7191 0.7165
0.5743 1.8789 4500 0.7008 0.7233 0.7144 0.7174 0.7156

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1