sbert-base-ja-arc / README.md
LeoChiuu's picture
Add new SentenceTransformer model.
a13d20c verified
|
raw
history blame
19.8 kB
metadata
base_model: colorfulscoop/sbert-base-ja
library_name: sentence-transformers
metrics:
  - cosine_accuracy
  - cosine_accuracy_threshold
  - cosine_f1
  - cosine_f1_threshold
  - cosine_precision
  - cosine_recall
  - cosine_ap
  - dot_accuracy
  - dot_accuracy_threshold
  - dot_f1
  - dot_f1_threshold
  - dot_precision
  - dot_recall
  - dot_ap
  - manhattan_accuracy
  - manhattan_accuracy_threshold
  - manhattan_f1
  - manhattan_f1_threshold
  - manhattan_precision
  - manhattan_recall
  - manhattan_ap
  - euclidean_accuracy
  - euclidean_accuracy_threshold
  - euclidean_f1
  - euclidean_f1_threshold
  - euclidean_precision
  - euclidean_recall
  - euclidean_ap
  - max_accuracy
  - max_accuracy_threshold
  - max_f1
  - max_f1_threshold
  - max_precision
  - max_recall
  - max_ap
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:401
  - loss:CosineSimilarityLoss
widget:
  - source_sentence: 昨夜何を食べたの?
    sentences:
      - 昨日作ったのはチキンヌードル?
      - 村長がどうしたの?
      - 雲より高くってどこ?
  - source_sentence: ナイトスタンドにある?
    sentences:
      - わかんない
      - スリッパ履いた?
      - だめじゃん
  - source_sentence: センパイ
    sentences:
      - 昨日の夜は暑かった
      - 調子はどう?
      - トーチ
  - source_sentence: 村人はどんな呪文を使うの?
    sentences:
      - スパイク
      - キミはどんな魔法を使うの?
      - うさんくさい
  - source_sentence: 祭壇の些細な違和感ってどういう意味?
    sentences:
      - 青いオーブがどこにあるか知ってる?
      - 赤い染みが皿にあった
      - これが花
model-index:
  - name: SentenceTransformer based on colorfulscoop/sbert-base-ja
    results:
      - task:
          type: binary-classification
          name: Binary Classification
        dataset:
          name: custom arc semantics data jp
          type: custom-arc-semantics-data-jp
        metrics:
          - type: cosine_accuracy
            value: 0.8855721393034826
            name: Cosine Accuracy
          - type: cosine_accuracy_threshold
            value: 0.6970740556716919
            name: Cosine Accuracy Threshold
          - type: cosine_f1
            value: 0.7766990291262137
            name: Cosine F1
          - type: cosine_f1_threshold
            value: 0.6637545228004456
            name: Cosine F1 Threshold
          - type: cosine_precision
            value: 0.8163265306122449
            name: Cosine Precision
          - type: cosine_recall
            value: 0.7407407407407407
            name: Cosine Recall
          - type: cosine_ap
            value: 0.6606381605892593
            name: Cosine Ap
          - type: dot_accuracy
            value: 0.8805970149253731
            name: Dot Accuracy
          - type: dot_accuracy_threshold
            value: 378.6933898925781
            name: Dot Accuracy Threshold
          - type: dot_f1
            value: 0.7647058823529411
            name: Dot F1
          - type: dot_f1_threshold
            value: 378.6933898925781
            name: Dot F1 Threshold
          - type: dot_precision
            value: 0.8125
            name: Dot Precision
          - type: dot_recall
            value: 0.7222222222222222
            name: Dot Recall
          - type: dot_ap
            value: 0.6865123266544332
            name: Dot Ap
          - type: manhattan_accuracy
            value: 0.8855721393034826
            name: Manhattan Accuracy
          - type: manhattan_accuracy_threshold
            value: 407.9349365234375
            name: Manhattan Accuracy Threshold
          - type: manhattan_f1
            value: 0.7766990291262137
            name: Manhattan F1
          - type: manhattan_f1_threshold
            value: 426.941650390625
            name: Manhattan F1 Threshold
          - type: manhattan_precision
            value: 0.8163265306122449
            name: Manhattan Precision
          - type: manhattan_recall
            value: 0.7407407407407407
            name: Manhattan Recall
          - type: manhattan_ap
            value: 0.6609390536301427
            name: Manhattan Ap
          - type: euclidean_accuracy
            value: 0.8855721393034826
            name: Euclidean Accuracy
          - type: euclidean_accuracy_threshold
            value: 18.663713455200195
            name: Euclidean Accuracy Threshold
          - type: euclidean_f1
            value: 0.7766990291262137
            name: Euclidean F1
          - type: euclidean_f1_threshold
            value: 19.35655975341797
            name: Euclidean F1 Threshold
          - type: euclidean_precision
            value: 0.8163265306122449
            name: Euclidean Precision
          - type: euclidean_recall
            value: 0.7407407407407407
            name: Euclidean Recall
          - type: euclidean_ap
            value: 0.6602743223356511
            name: Euclidean Ap
          - type: max_accuracy
            value: 0.8855721393034826
            name: Max Accuracy
          - type: max_accuracy_threshold
            value: 407.9349365234375
            name: Max Accuracy Threshold
          - type: max_f1
            value: 0.7766990291262137
            name: Max F1
          - type: max_f1_threshold
            value: 426.941650390625
            name: Max F1 Threshold
          - type: max_precision
            value: 0.8163265306122449
            name: Max Precision
          - type: max_recall
            value: 0.7407407407407407
            name: Max Recall
          - type: max_ap
            value: 0.6865123266544332
            name: Max Ap

SentenceTransformer based on colorfulscoop/sbert-base-ja

This is a sentence-transformers model finetuned from colorfulscoop/sbert-base-ja on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: colorfulscoop/sbert-base-ja
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • csv

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    '祭壇の些細な違和感ってどういう意味?',
    '青いオーブがどこにあるか知ってる?',
    'これが花',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Binary Classification

Metric Value
cosine_accuracy 0.8856
cosine_accuracy_threshold 0.6971
cosine_f1 0.7767
cosine_f1_threshold 0.6638
cosine_precision 0.8163
cosine_recall 0.7407
cosine_ap 0.6606
dot_accuracy 0.8806
dot_accuracy_threshold 378.6934
dot_f1 0.7647
dot_f1_threshold 378.6934
dot_precision 0.8125
dot_recall 0.7222
dot_ap 0.6865
manhattan_accuracy 0.8856
manhattan_accuracy_threshold 407.9349
manhattan_f1 0.7767
manhattan_f1_threshold 426.9417
manhattan_precision 0.8163
manhattan_recall 0.7407
manhattan_ap 0.6609
euclidean_accuracy 0.8856
euclidean_accuracy_threshold 18.6637
euclidean_f1 0.7767
euclidean_f1_threshold 19.3566
euclidean_precision 0.8163
euclidean_recall 0.7407
euclidean_ap 0.6603
max_accuracy 0.8856
max_accuracy_threshold 407.9349
max_f1 0.7767
max_f1_threshold 426.9417
max_precision 0.8163
max_recall 0.7407
max_ap 0.6865

Training Details

Training Dataset

csv

  • Dataset: csv
  • Size: 401 training samples
  • Columns: text1, text2, and label
  • Approximate statistics based on the first 401 samples:
    text1 text2 label
    type string string int
    details
    • min: 4 tokens
    • mean: 8.34 tokens
    • max: 14 tokens
    • min: 4 tokens
    • mean: 7.9 tokens
    • max: 14 tokens
    • 0: ~67.00%
    • 1: ~33.00%
  • Samples:
    text1 text2 label
    雲より高くってどういう意味? 猫好き 0
    花の囁きってなに? リリアンについて教えて 0
    リリアンってものの姿を変える魔法を使える? どんな魔法なの? 0
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Evaluation Dataset

csv

  • Dataset: csv
  • Size: 401 evaluation samples
  • Columns: text1, text2, and label
  • Approximate statistics based on the first 401 samples:
    text1 text2 label
    type string string int
    details
    • min: 4 tokens
    • mean: 8.23 tokens
    • max: 15 tokens
    • min: 4 tokens
    • mean: 7.46 tokens
    • max: 14 tokens
    • 0: ~73.13%
    • 1: ~26.87%
  • Samples:
    text1 text2 label
    棚からトマトがなくなってたから トマトが棚からなくなっていたから 1
    欲しくない 家の中へ行こう 0
    昨日は何を作ったの? ビーフシチュー食べた? 0
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • learning_rate: 2e-05
  • num_train_epochs: 10
  • warmup_ratio: 0.4
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 10
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.4
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss custom-arc-semantics-data-jp_max_ap
1.0 25 0.2393 0.2390 0.5655
2.0 50 0.1724 0.1689 0.6075
3.0 75 0.1046 0.1326 0.6478
4.0 100 0.062 0.1183 0.6618
5.0 125 0.0349 0.1158 0.6683
6.0 150 0.0258 0.1142 0.6772
7.0 175 0.0211 0.1168 0.6739
8.0 200 0.0204 0.1180 0.6765
9.0 225 0.0194 0.1178 0.6869
10.0 250 0.0185 0.1180 0.6865

Framework Versions

  • Python: 3.10.14
  • Sentence Transformers: 3.1.0
  • Transformers: 4.44.2
  • PyTorch: 2.4.1+cu121
  • Accelerate: 0.34.2
  • Datasets: 2.20.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}