Leo97's picture
update model card README.md
d301f82
|
raw
history blame
2.46 kB
metadata
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: KoELECTRA-small-v3-modu-ner
    results: []

KoELECTRA-small-v3-modu-ner

This model is a fine-tuned version of monologg/koelectra-small-v3-discriminator on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1350
  • Precision: 0.8068
  • Recall: 0.8308
  • F1: 0.8186
  • Accuracy: 0.9598

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 7575
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 3788 0.3021 0.6356 0.6380 0.6368 0.9223
No log 2.0 7576 0.1905 0.7397 0.7441 0.7419 0.9431
No log 3.0 11364 0.1612 0.7611 0.7897 0.7751 0.9505
No log 4.0 15152 0.1494 0.7855 0.7998 0.7926 0.9544
No log 5.0 18940 0.1427 0.7833 0.8194 0.8009 0.9559
No log 6.0 22728 0.1398 0.7912 0.8223 0.8064 0.9572
No log 7.0 26516 0.1361 0.8035 0.8240 0.8136 0.9587
No log 8.0 30304 0.1360 0.8047 0.8280 0.8162 0.9592
No log 9.0 34092 0.1346 0.8058 0.8299 0.8177 0.9596
0.2256 10.0 37880 0.1350 0.8068 0.8308 0.8186 0.9598

Framework versions

  • Transformers 4.27.4
  • Pytorch 1.13.1+cu116
  • Datasets 2.11.0
  • Tokenizers 0.13.2