Leo97's picture
Update README.md
2c0d93c
|
raw
history blame
2.67 kB
metadata
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: KoELECTRA-small-v3-modu-ner
    results: []
language:
  - ko
pipeline_tag: token-classification
examples: null
widget:
  - text: 서울역으로 안내해줘
    example_title: Sentence_1
  - text: 에어컨 온도를 3 올려줘
    example_title: Sentence_2

KoELECTRA-small-v3-modu-ner

This model is a fine-tuned version of monologg/koelectra-small-v3-discriminator on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1354
  • Precision: 0.8084
  • Recall: 0.8311
  • F1: 0.8196
  • Accuracy: 0.9599

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 7575
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 3788 0.2991 0.6481 0.6373 0.6426 0.9229
No log 2.0 7576 0.1904 0.7479 0.7418 0.7448 0.9438
No log 3.0 11364 0.1620 0.7577 0.7940 0.7754 0.9502
No log 4.0 15152 0.1505 0.7890 0.7982 0.7936 0.9544
No log 5.0 18940 0.1417 0.7905 0.8163 0.8032 0.9563
No log 6.0 22728 0.1392 0.7914 0.8250 0.8079 0.9572
No log 7.0 26516 0.1363 0.8060 0.8231 0.8144 0.9589
No log 8.0 30304 0.1367 0.8035 0.8294 0.8162 0.9592
No log 9.0 34092 0.1349 0.8085 0.8296 0.8189 0.9597
0.2299 10.0 37880 0.1354 0.8084 0.8311 0.8196 0.9599

Framework versions

  • Transformers 4.27.3
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2