update model card README.md
Browse files
README.md
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
---
|
|
|
2 |
tags:
|
3 |
- generated_from_trainer
|
4 |
metrics:
|
@@ -14,11 +15,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
14 |
|
15 |
# KcELECTRA-small-v2022-finetuned-in-vehicle
|
16 |
|
17 |
-
This model
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
- Loss: 0.
|
20 |
-
- Accuracy: 0.
|
21 |
-
- F1: 0.
|
22 |
|
23 |
## Model description
|
24 |
|
@@ -43,112 +44,62 @@ The following hyperparameters were used during training:
|
|
43 |
- seed: 42
|
44 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
- lr_scheduler_type: linear
|
46 |
-
- num_epochs:
|
47 |
|
48 |
### Training results
|
49 |
|
50 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
51 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
|
52 |
-
| 2.
|
53 |
-
| 2.
|
54 |
-
| 2.
|
55 |
-
| 2.
|
56 |
-
|
|
57 |
-
|
|
58 |
-
|
|
59 |
-
|
|
60 |
-
| 1.
|
61 |
-
| 1.
|
62 |
-
| 1.
|
63 |
-
| 1.
|
64 |
-
| 1.
|
65 |
-
| 1.
|
66 |
-
| 1.
|
67 |
-
| 1.
|
68 |
-
| 1.
|
69 |
-
|
|
70 |
-
|
|
71 |
-
|
|
72 |
-
|
|
73 |
-
|
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.24 | 51.0 | 1938 | 0.3942 | 0.92 | 0.9082 |
|
103 |
-
| 0.2279 | 52.0 | 1976 | 0.3773 | 0.9267 | 0.9169 |
|
104 |
-
| 0.2148 | 53.0 | 2014 | 0.3794 | 0.92 | 0.9086 |
|
105 |
-
| 0.2077 | 54.0 | 2052 | 0.3789 | 0.92 | 0.9082 |
|
106 |
-
| 0.2061 | 55.0 | 2090 | 0.3770 | 0.9233 | 0.9135 |
|
107 |
-
| 0.204 | 56.0 | 2128 | 0.3779 | 0.9267 | 0.9165 |
|
108 |
-
| 0.191 | 57.0 | 2166 | 0.3713 | 0.92 | 0.9103 |
|
109 |
-
| 0.1914 | 58.0 | 2204 | 0.3731 | 0.9233 | 0.9133 |
|
110 |
-
| 0.1789 | 59.0 | 2242 | 0.3682 | 0.9233 | 0.9132 |
|
111 |
-
| 0.1808 | 60.0 | 2280 | 0.3650 | 0.9267 | 0.9167 |
|
112 |
-
| 0.1677 | 61.0 | 2318 | 0.3603 | 0.9233 | 0.9132 |
|
113 |
-
| 0.1747 | 62.0 | 2356 | 0.3589 | 0.9233 | 0.9132 |
|
114 |
-
| 0.1684 | 63.0 | 2394 | 0.3590 | 0.9167 | 0.9069 |
|
115 |
-
| 0.159 | 64.0 | 2432 | 0.3573 | 0.9233 | 0.9135 |
|
116 |
-
| 0.1535 | 65.0 | 2470 | 0.3618 | 0.92 | 0.9101 |
|
117 |
-
| 0.1563 | 66.0 | 2508 | 0.3632 | 0.92 | 0.9098 |
|
118 |
-
| 0.1415 | 67.0 | 2546 | 0.3543 | 0.9233 | 0.9132 |
|
119 |
-
| 0.1435 | 68.0 | 2584 | 0.3522 | 0.92 | 0.9103 |
|
120 |
-
| 0.1421 | 69.0 | 2622 | 0.3552 | 0.9233 | 0.9135 |
|
121 |
-
| 0.1388 | 70.0 | 2660 | 0.3558 | 0.93 | 0.9196 |
|
122 |
-
| 0.1382 | 71.0 | 2698 | 0.3536 | 0.9267 | 0.9182 |
|
123 |
-
| 0.1326 | 72.0 | 2736 | 0.3429 | 0.9233 | 0.9135 |
|
124 |
-
| 0.1303 | 73.0 | 2774 | 0.3466 | 0.9267 | 0.9169 |
|
125 |
-
| 0.1262 | 74.0 | 2812 | 0.3477 | 0.9233 | 0.9140 |
|
126 |
-
| 0.1247 | 75.0 | 2850 | 0.3458 | 0.9233 | 0.9140 |
|
127 |
-
| 0.1198 | 76.0 | 2888 | 0.3518 | 0.9267 | 0.9165 |
|
128 |
-
| 0.1175 | 77.0 | 2926 | 0.3517 | 0.9233 | 0.9135 |
|
129 |
-
| 0.119 | 78.0 | 2964 | 0.3531 | 0.9267 | 0.9181 |
|
130 |
-
| 0.1134 | 79.0 | 3002 | 0.3506 | 0.9267 | 0.9181 |
|
131 |
-
| 0.113 | 80.0 | 3040 | 0.3501 | 0.9233 | 0.9135 |
|
132 |
-
| 0.1167 | 81.0 | 3078 | 0.3486 | 0.9233 | 0.9135 |
|
133 |
-
| 0.1115 | 82.0 | 3116 | 0.3446 | 0.92 | 0.9103 |
|
134 |
-
| 0.111 | 83.0 | 3154 | 0.3494 | 0.9233 | 0.9135 |
|
135 |
-
| 0.107 | 84.0 | 3192 | 0.3504 | 0.9233 | 0.9135 |
|
136 |
-
| 0.1074 | 85.0 | 3230 | 0.3494 | 0.9233 | 0.9135 |
|
137 |
-
| 0.1092 | 86.0 | 3268 | 0.3446 | 0.92 | 0.9103 |
|
138 |
-
| 0.102 | 87.0 | 3306 | 0.3478 | 0.9233 | 0.9135 |
|
139 |
-
| 0.1067 | 88.0 | 3344 | 0.3451 | 0.92 | 0.9108 |
|
140 |
-
| 0.1073 | 89.0 | 3382 | 0.3477 | 0.9267 | 0.9181 |
|
141 |
-
| 0.1005 | 90.0 | 3420 | 0.3475 | 0.9233 | 0.9135 |
|
142 |
-
| 0.0987 | 91.0 | 3458 | 0.3495 | 0.9233 | 0.9135 |
|
143 |
-
| 0.1028 | 92.0 | 3496 | 0.3501 | 0.9233 | 0.9135 |
|
144 |
-
| 0.1027 | 93.0 | 3534 | 0.3498 | 0.9233 | 0.9135 |
|
145 |
-
| 0.0998 | 94.0 | 3572 | 0.3505 | 0.9233 | 0.9135 |
|
146 |
-
| 0.1 | 95.0 | 3610 | 0.3511 | 0.9233 | 0.9135 |
|
147 |
-
| 0.1013 | 96.0 | 3648 | 0.3509 | 0.9233 | 0.9135 |
|
148 |
-
| 0.1014 | 97.0 | 3686 | 0.3506 | 0.9267 | 0.9181 |
|
149 |
-
| 0.1034 | 98.0 | 3724 | 0.3509 | 0.9267 | 0.9181 |
|
150 |
-
| 0.0958 | 99.0 | 3762 | 0.3512 | 0.9267 | 0.9181 |
|
151 |
-
| 0.1029 | 100.0 | 3800 | 0.3512 | 0.9267 | 0.9181 |
|
152 |
|
153 |
|
154 |
### Framework versions
|
|
|
1 |
---
|
2 |
+
license: mit
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
metrics:
|
|
|
15 |
|
16 |
# KcELECTRA-small-v2022-finetuned-in-vehicle
|
17 |
|
18 |
+
This model is a fine-tuned version of [beomi/KcELECTRA-small-v2022](https://huggingface.co/beomi/KcELECTRA-small-v2022) on an unknown dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.5014
|
21 |
+
- Accuracy: 0.92
|
22 |
+
- F1: 0.9010
|
23 |
|
24 |
## Model description
|
25 |
|
|
|
44 |
- seed: 42
|
45 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
- lr_scheduler_type: linear
|
47 |
+
- num_epochs: 50
|
48 |
|
49 |
### Training results
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
52 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
|
53 |
+
| 2.6201 | 1.0 | 38 | 2.5909 | 0.18 | 0.0549 |
|
54 |
+
| 2.5788 | 2.0 | 76 | 2.5466 | 0.18 | 0.0549 |
|
55 |
+
| 2.5397 | 3.0 | 114 | 2.4976 | 0.18 | 0.0549 |
|
56 |
+
| 2.4886 | 4.0 | 152 | 2.4178 | 0.3833 | 0.2516 |
|
57 |
+
| 2.4062 | 5.0 | 190 | 2.3038 | 0.4267 | 0.2575 |
|
58 |
+
| 2.3015 | 6.0 | 228 | 2.1798 | 0.4333 | 0.2746 |
|
59 |
+
| 2.1868 | 7.0 | 266 | 2.0589 | 0.52 | 0.4121 |
|
60 |
+
| 2.0713 | 8.0 | 304 | 1.9436 | 0.6133 | 0.5349 |
|
61 |
+
| 1.9763 | 9.0 | 342 | 1.8359 | 0.66 | 0.6048 |
|
62 |
+
| 1.8715 | 10.0 | 380 | 1.7361 | 0.72 | 0.6863 |
|
63 |
+
| 1.7755 | 11.0 | 418 | 1.6402 | 0.7233 | 0.6891 |
|
64 |
+
| 1.6873 | 12.0 | 456 | 1.5496 | 0.81 | 0.7774 |
|
65 |
+
| 1.5828 | 13.0 | 494 | 1.4681 | 0.8433 | 0.8089 |
|
66 |
+
| 1.5222 | 14.0 | 532 | 1.3870 | 0.84 | 0.8038 |
|
67 |
+
| 1.4397 | 15.0 | 570 | 1.3148 | 0.88 | 0.8554 |
|
68 |
+
| 1.3673 | 16.0 | 608 | 1.2461 | 0.89 | 0.8705 |
|
69 |
+
| 1.3047 | 17.0 | 646 | 1.1801 | 0.91 | 0.8903 |
|
70 |
+
| 1.2232 | 18.0 | 684 | 1.1209 | 0.9033 | 0.8844 |
|
71 |
+
| 1.1661 | 19.0 | 722 | 1.0618 | 0.9 | 0.8817 |
|
72 |
+
| 1.1104 | 20.0 | 760 | 1.0207 | 0.89 | 0.8660 |
|
73 |
+
| 1.0572 | 21.0 | 798 | 0.9679 | 0.8933 | 0.8725 |
|
74 |
+
| 1.0191 | 22.0 | 836 | 0.9243 | 0.8933 | 0.8722 |
|
75 |
+
| 0.9548 | 23.0 | 874 | 0.8850 | 0.8967 | 0.8757 |
|
76 |
+
| 0.9364 | 24.0 | 912 | 0.8429 | 0.9 | 0.8790 |
|
77 |
+
| 0.871 | 25.0 | 950 | 0.8094 | 0.8933 | 0.8724 |
|
78 |
+
| 0.8629 | 26.0 | 988 | 0.7773 | 0.8967 | 0.8746 |
|
79 |
+
| 0.7992 | 27.0 | 1026 | 0.7540 | 0.8933 | 0.8735 |
|
80 |
+
| 0.7948 | 28.0 | 1064 | 0.7234 | 0.8933 | 0.8704 |
|
81 |
+
| 0.7455 | 29.0 | 1102 | 0.6967 | 0.8967 | 0.8749 |
|
82 |
+
| 0.7236 | 30.0 | 1140 | 0.6760 | 0.91 | 0.8881 |
|
83 |
+
| 0.6905 | 31.0 | 1178 | 0.6519 | 0.9033 | 0.8832 |
|
84 |
+
| 0.6857 | 32.0 | 1216 | 0.6396 | 0.9133 | 0.8944 |
|
85 |
+
| 0.6526 | 33.0 | 1254 | 0.6155 | 0.9167 | 0.8963 |
|
86 |
+
| 0.6294 | 34.0 | 1292 | 0.6025 | 0.9033 | 0.8835 |
|
87 |
+
| 0.6179 | 35.0 | 1330 | 0.5909 | 0.9167 | 0.8970 |
|
88 |
+
| 0.6022 | 36.0 | 1368 | 0.5757 | 0.9133 | 0.8934 |
|
89 |
+
| 0.5753 | 37.0 | 1406 | 0.5610 | 0.92 | 0.8999 |
|
90 |
+
| 0.561 | 38.0 | 1444 | 0.5536 | 0.9167 | 0.8970 |
|
91 |
+
| 0.553 | 39.0 | 1482 | 0.5417 | 0.92 | 0.8998 |
|
92 |
+
| 0.5395 | 40.0 | 1520 | 0.5367 | 0.92 | 0.9018 |
|
93 |
+
| 0.5402 | 41.0 | 1558 | 0.5276 | 0.92 | 0.9018 |
|
94 |
+
| 0.5266 | 42.0 | 1596 | 0.5238 | 0.92 | 0.9010 |
|
95 |
+
| 0.5178 | 43.0 | 1634 | 0.5182 | 0.92 | 0.9018 |
|
96 |
+
| 0.52 | 44.0 | 1672 | 0.5129 | 0.92 | 0.9010 |
|
97 |
+
| 0.495 | 45.0 | 1710 | 0.5069 | 0.9167 | 0.8981 |
|
98 |
+
| 0.5124 | 46.0 | 1748 | 0.5054 | 0.9167 | 0.8981 |
|
99 |
+
| 0.5034 | 47.0 | 1786 | 0.5038 | 0.92 | 0.9018 |
|
100 |
+
| 0.5108 | 48.0 | 1824 | 0.5020 | 0.92 | 0.9018 |
|
101 |
+
| 0.483 | 49.0 | 1862 | 0.5016 | 0.92 | 0.9010 |
|
102 |
+
| 0.4974 | 50.0 | 1900 | 0.5014 | 0.92 | 0.9010 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
|
105 |
### Framework versions
|