Text Generation
Transformers
PyTorch
bloom
text-generation-inference
Inference Endpoints
w11wo commited on
Commit
27ad1bd
1 Parent(s): df1fb27

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +524 -0
README.md CHANGED
@@ -1,3 +1,527 @@
1
  ---
2
  license: bigscience-bloom-rail-1.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: bigscience-bloom-rail-1.0
3
+ language:
4
+ - ak
5
+ - ar
6
+ - as
7
+ - bm
8
+ - bn
9
+ - ca
10
+ - code
11
+ - en
12
+ - es
13
+ - eu
14
+ - fon
15
+ - fr
16
+ - gu
17
+ - hi
18
+ - id
19
+ - ig
20
+ - ki
21
+ - kn
22
+ - lg
23
+ - ln
24
+ - ml
25
+ - mr
26
+ - ne
27
+ - nso
28
+ - ny
29
+ - or
30
+ - pa
31
+ - pt
32
+ - rn
33
+ - rw
34
+ - sn
35
+ - st
36
+ - sw
37
+ - ta
38
+ - te
39
+ - tn
40
+ - ts
41
+ - tum
42
+ - tw
43
+ - ur
44
+ - vi
45
+ - wo
46
+ - xh
47
+ - yo
48
+ - zh
49
+ - zhs
50
+ - zht
51
+ - zu
52
+ pipeline_tag: text-generation
53
  ---
54
+
55
+ **NOTE: This is the FP32 version of [bigscience/bloom-1b7](https://huggingface.co/bigscience/bloom-1b7).**
56
+
57
+ <h1 style='text-align: center '>BLOOM LM</h1>
58
+ <h2 style='text-align: center '><em>BigScience Large Open-science Open-access Multilingual Language Model</em> </h2>
59
+ <h3 style='text-align: center '>Model Card</h3>
60
+ <img src="https://s3.amazonaws.com/moonup/production/uploads/1657124309515-5f17f0a0925b9863e28ad517.png" alt="BigScience Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
61
+
62
+
63
+ Version 1.0 / 26.May.2022
64
+
65
+
66
+ # Model Card for Bloom-1b7
67
+
68
+ <!-- Provide a quick summary of what the model is/does. -->
69
+
70
+ ## Table of Contents
71
+ 1. [Model Details](#model-details)
72
+ 2. [Uses](#uses)
73
+ 3. [Bias, Risks, and Limitations](#bias-risks-and-limitations)
74
+ 4. [Recommendations](#recommendations)
75
+ 5. [Training Data](#training-data)
76
+ 6. [Evaluation](#evaluation)
77
+ 7. [Environmental Impact](#environmental-impact)
78
+ 8. [Technical Specifications](#techincal-specifications)
79
+ 9. [Citation](#citation)
80
+ 10. [Glossary and Calculations](#glossary-and-calculations)
81
+ 11. [More Information](#more-information)
82
+ 12. [Model Card Authors](#model-card-authors)
83
+ 13. [Model Card Contact](#model-card-contact)
84
+
85
+ ## Model Details
86
+
87
+ ### Model Description
88
+ *This section provides information for anyone who wants to know about the model.*
89
+
90
+ - **Developed by:** BigScience ([website](https://bigscience.huggingface.co))
91
+
92
+ * All collaborators are either volunteers or have an agreement with their employer. *(Further breakdown of participants forthcoming.)*
93
+
94
+ - **Model Type:** Transformer-based Language Model
95
+ - **Version:** 1.0.0
96
+ - **Languages:** Multiple; see [training data](#training-data)
97
+ - **License:** RAIL License v1.0 ([link](https://huggingface.co/spaces/bigscience/license))
98
+ - **Release Date Estimate:** Monday, 11.July.2022
99
+ - **Funded by:**
100
+
101
+ * The French government.
102
+
103
+ * Hugging Face ([website](https://huggingface.co)).
104
+
105
+ * Organizations of contributors. *(Further breakdown of organizations forthcoming.)*
106
+
107
+ ## Uses
108
+
109
+ *This section addresses questions around how the model is intended to be used, discusses the foreseeable users of the model (including those affected by the model), and describes uses that are considered out of scope or misuse of the model.
110
+ It provides information for anyone considering using the model or who is affected by the model.*
111
+
112
+ ### Intended Use
113
+
114
+ This model is being created in order to enable public research on large language models (LLMs). LLMs are intended to be used for language generation or as a pretrained base model that can be further fine-tuned for specific tasks. Use cases below are not exhaustive.
115
+
116
+ #### **Direct Use**
117
+
118
+ - Text generation
119
+
120
+ - Exploring characteristics of language generated by a language model
121
+
122
+ - Examples: Cloze tests, counterfactuals, generations with reframings
123
+
124
+ #### **Downstream Use**
125
+
126
+ - Tasks that leverage language models include: Information Extraction, Question Answering, Summarization
127
+
128
+ ### Misuse and Out-of-scope Use
129
+ *This section addresses what users ought not do with the model.*
130
+
131
+ See the [BLOOM License](https://huggingface.co/spaces/bigscience/license), Attachment A, for detailed usage restrictions. The below list is non-exhaustive, but lists some easily foreseeable problematic use cases.
132
+
133
+ #### **Out-of-scope Uses**
134
+
135
+ Using the model in [high-stakes](#high-stakes) settings is out of scope for this model. The model is not designed for [critical decisions](#critical-decisions) nor uses with any material consequences on an individual's livelihood or wellbeing. The model outputs content that appears factual but is not correct.
136
+
137
+ ##### Out-of-scope Uses Include:
138
+
139
+ - Usage in biomedical domains, political and legal domains, or finance domains
140
+
141
+ - Usage for evaluating or scoring individuals, such as for employment, education, or credit
142
+
143
+ - Applying the model for critical automatic decisions, generating factual content, creating reliable summaries, or generating predictions that must be correct
144
+
145
+ #### **Misuse**
146
+
147
+ Intentionally using the model for harm, violating [human rights](#human-rights), or other kinds of malicious activities, is a misuse of this model. This includes:
148
+
149
+ - Spam generation
150
+
151
+ - Disinformation and influence operations
152
+
153
+ - Disparagement and defamation
154
+
155
+ - Harassment and abuse
156
+
157
+ - [Deception](#deception)
158
+
159
+ - Unconsented impersonation and imitation
160
+
161
+ - Unconsented surveillance
162
+
163
+ - Generating content without attribution to the model, as specified in the [RAIL License, Use Restrictions](https://huggingface.co/spaces/bigscience/license)
164
+
165
+ ### Intended Users
166
+
167
+ #### **Direct Users**
168
+
169
+ - General Public
170
+
171
+ - Researchers
172
+
173
+ - Students
174
+
175
+ - Educators
176
+
177
+ - Engineers/developers
178
+
179
+ - Non-commercial entities
180
+
181
+ - Community advocates, including human and civil rights groups
182
+
183
+ #### Indirect Users
184
+
185
+ - Users of derivatives created by Direct Users, such as those using software with an [intended use](#intended-use)
186
+
187
+ - Users of [Derivatives of the Model, as described in the License](https://huggingface.co/spaces/bigscience/license)
188
+
189
+ #### Others Affected (Parties Prenantes)
190
+
191
+ - People and groups referred to by the LLM
192
+
193
+ - People and groups exposed to outputs of, or decisions based on, the LLM
194
+
195
+ - People and groups whose original work is included in the LLM
196
+
197
+
198
+
199
+ ## Bias, Risks, and Limitations
200
+ *This section identifies foreseeable harms and misunderstandings.*
201
+
202
+ Model may:
203
+
204
+ - Overrepresent some viewpoints and underrepresent others
205
+
206
+ - Contain stereotypes
207
+
208
+ - Contain [personal information](#personal-data-and-information)
209
+
210
+ - Generate:
211
+
212
+ - Hateful, abusive, or violent language
213
+
214
+ - Discriminatory or prejudicial language
215
+
216
+ - Content that may not be appropriate for all settings, including sexual content
217
+
218
+ - Make errors, including producing incorrect information as if it were factual
219
+
220
+ - Generate irrelevant or repetitive outputs
221
+
222
+
223
+ ### Recommendations
224
+
225
+
226
+ *This section provides information on warnings and potential mitigations.*
227
+
228
+ - Indirect users should be made aware when the content they're working with is created by the LLM.
229
+
230
+ - Users should be aware of [Risks and Limitations](#risks-and-limitations), and include an appropriate age disclaimer or blocking interface as necessary.
231
+
232
+ - Models pretrained with the LLM should include an updated Model Card.
233
+
234
+ - Users of the model should provide mechanisms for those affected to provide feedback, such as an email address for comments.
235
+
236
+
237
+
238
+
239
+ ## Training Data
240
+ *This section provides a high-level overview of the training data. It is relevant for anyone who wants to know the basics of what the model is learning.*
241
+
242
+
243
+
244
+
245
+ Details for each dataset are provided in individual [Data Cards](https://huggingface.co/spaces/bigscience/BigScienceCorpus).
246
+
247
+ Training data includes:
248
+
249
+ - 45 natural languages
250
+
251
+ - 12 programming languages
252
+
253
+ - In 1.5TB of pre-processed text, converted into 350B unique tokens (see [the tokenizer section](#tokenization) for more.)
254
+
255
+
256
+ #### **Languages**
257
+
258
+ The pie chart shows the distribution of languages in training data.
259
+
260
+ ![pie chart showing the distribution of languages in training data](https://github.com/bigscience-workshop/model_card/blob/main/assets/data/pie_chart.svg?raw=true)
261
+
262
+
263
+ **The following table shows the further distribution of Niger-Congo and Indic languages in the training data.**
264
+
265
+
266
+ | Niger Congo | Percentage | | Indic | Percentage |
267
+ |----------------|------------ |------ |-----------|------------|
268
+ | Chi Tumbuka | 0.00002 | | Assamese | 0.01 |
269
+ | Kikuyu | 0.00004 | | Odia | 0.04 |
270
+ | Bambara | 0.00004 | | Gujarati | 0.04 |
271
+ | Akan | 0.00007 | | Marathi | 0.05 |
272
+ | Xitsonga | 0.00007 | | Punjabi | 0.05 |
273
+ | Sesotho | 0.00007 | | Kannada | 0.06 |
274
+ | Chi Chewa | 0.0001 | | Nepali | 0.07 |
275
+ | Setswana | 0.0002 | | Telugu | 0.09 |
276
+ | Northern Sotho | 0.0002 | | Malayalam | 0.10 |
277
+ | Fon | 0.0002 | | Urdu | 0.10 |
278
+ | Kirundi | 0.0003 | | Tamil | 0.20 |
279
+ | Wolof | 0.0004 | | Bengali | 0.50 |
280
+ | Kuganda | 0.0004 | | Hindi | 0.70 |
281
+ | Chi Shona | 0.001 |
282
+ | Isi Zulu | 0.001 |
283
+ | Igbo | 0.001 |
284
+ | Xhosa | 0.001 |
285
+ | Kinyarwanda | 0.003 |
286
+ | Yoruba | 0.006 |
287
+ | Swahili | 0.02 |
288
+ </details>
289
+
290
+ **The following table shows the distribution of programming languages.**
291
+
292
+
293
+ | Extension | Language | Number of files |
294
+ |----------------|------------|-----------------|
295
+ | java | Java | 5,407,724 |
296
+ | php | PHP | 4,942,186 |
297
+ | cpp | C++ | 2,503,930 |
298
+ | py | Python | 2,435,072 |
299
+ | js | JavaScript | 1,905,518 |
300
+ | cs | C# | 1,577,347 |
301
+ | rb | Ruby | 6,78,413 |
302
+ | cc | C++ | 443,054 |
303
+ | hpp | C++ | 391,048 |
304
+ | lua | Lua | 352,317 |
305
+ | go | GO | 227,763 |
306
+ | ts | TypeScript | 195,254 |
307
+ | C | C | 134,537 |
308
+ | scala | Scala | 92,052 |
309
+ | hh | C++ | 67,161 |
310
+ | H | C++ | 55,899 |
311
+ | tsx | TypeScript | 33,107 |
312
+ | rs | Rust | 29,693 |
313
+ | phpt | PHP | 9,702 |
314
+ | c++ | C++ | 1,342 |
315
+ | h++ | C++ | 791 |
316
+ | php3 | PHP | 540 |
317
+ | phps | PHP | 270 |
318
+ | php5 | PHP | 166 |
319
+ | php4 | PHP | 29 |
320
+
321
+
322
+ ## Evaluation
323
+ *This section describes the evaluation protocols and provides the results.*
324
+
325
+
326
+ ### Metrics
327
+ *This section describes the different ways performance is calculated and why.*
328
+
329
+ Includes:
330
+
331
+ | Metric | Why chosen |
332
+ |--------------------|--------------------------------------------------------------------|
333
+ | [Perplexity](#perplexity) | Standard metric for quantifying model improvements during training |
334
+ | Cross Entropy [Loss](#loss) | Standard objective for language models. |
335
+
336
+ And multiple different metrics for specific tasks. _(More evaluation metrics forthcoming upon completion of evaluation protocol.)_
337
+
338
+ ### Factors
339
+ *This section lists some different aspects of what BLOOM models. Its focus is on those aspects that are likely to give rise to high variance in model behavior.*
340
+
341
+ - Language, such as English or Yoruba
342
+
343
+ - Domain, such as newswire or stories
344
+
345
+ - Demographic characteristics, such as gender or nationality
346
+
347
+ ### Results
348
+ *Results are based on the [Factors](#factors) and [Metrics](#metrics).*
349
+
350
+ **Train-time Evaluation:**
351
+
352
+ As of 25.May.2022, 15:00 PST:
353
+
354
+ - Training Loss: 2.0
355
+
356
+ - Validation Loss: 2.2
357
+
358
+ - Perplexity: 8.9
359
+
360
+ (More evaluation scores forthcoming at the end of model training.)
361
+
362
+ - [BLOOM Book](https://huggingface.co/spaces/bigscience/bloom-book): Read generations from BLOOM based on prompts provided by the community
363
+
364
+
365
+
366
+ ## Environmental Impact
367
+
368
+ The training supercomputer, Jean Zay ([website](http://www.idris.fr/eng/jean-zay/jean-zay-presentation-eng.html)), uses mostly nuclear energy. The heat generated by it is reused for heating campus housing.
369
+
370
+ **Estimated carbon emissions:** *(Forthcoming upon completion of training.)*
371
+
372
+ **Estimated electricity usage:** *(Forthcoming upon completion of training.)*
373
+
374
+
375
+
376
+ ## Technical Specifications
377
+ *This section provides information for people who work on model development.*
378
+
379
+
380
+ Please see [the BLOOM training README](https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml#readme) for full details on replicating training.
381
+
382
+ **Model Architecture:** Modified from Megatron-LM GPT2 (see [paper](https://arxiv.org/abs/1909.08053), [BLOOM Megatron code](https://github.com/bigscience-workshop/Megatron-DeepSpeed)):
383
+
384
+ * Decoder-only architecture
385
+
386
+ * Layer normalization applied to word embeddings layer (`StableEmbedding`; see [code](https://github.com/facebookresearch/bitsandbytes), [paper](https://arxiv.org/pdf/2110.02861.pdf))
387
+
388
+ * ALiBI positional encodings (see [paper](https://arxiv.org/pdf/2108.12409.pdf)), with GeLU activation functions
389
+
390
+ * 1,722,408,960 parameters:
391
+
392
+ * 513,802,240 embedding parameters
393
+
394
+ * 24 layers, 16 attention heads
395
+
396
+ * Hidden layers are 2048-dimensional
397
+
398
+ * Sequence length of 2048 tokens used (see [BLOOM tokenizer](https://huggingface.co/bigscience/tokenizer), [tokenizer description](#tokenization))
399
+
400
+ **Objective Function:** Cross Entropy with mean reduction (see [API documentation](https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html#torch.nn.CrossEntropyLoss)).
401
+
402
+ **Compute infrastructure:** Jean Zay Public Supercomputer, provided by the French government (see [announcement](https://www.enseignementsup-recherche.gouv.fr/fr/signature-du-marche-d-acquisition-de-l-un-des-supercalculateurs-les-plus-puissants-d-europe-46733)).
403
+
404
+ * Hardware: 64 V100 16/32GB GPUs (16 nodes):
405
+
406
+ * 4 GPUs per node
407
+
408
+ * 40 CPUs per task
409
+
410
+ * 1 task per node
411
+
412
+ * CPU: AMD
413
+
414
+ * CPU memory: 160GB per node
415
+
416
+ * GPU memory: 64GB or 128GB (depending on node availability during training) per node
417
+
418
+ * Inter-node connect: Omni-Path Architecture (OPA)
419
+
420
+ * NCCL-communications network: a fully dedicated subnet
421
+
422
+ * Disc IO network: shared network with other types of nodes
423
+
424
+ * Software:
425
+
426
+ * Megatron-DeepSpeed ([Github link](https://github.com/bigscience-workshop/Megatron-DeepSpeed))
427
+
428
+ * DeepSpeed ([Github link](https://github.com/microsoft/DeepSpeed))
429
+
430
+ * PyTorch (pytorch-1.11 w/ CUDA-11.5; see [Github link](https://github.com/pytorch/pytorch))
431
+
432
+ * apex ([Github link](https://github.com/NVIDIA/apex))
433
+
434
+ ### **Training**
435
+
436
+ - Checkpoint size:
437
+
438
+ - Fp16 weights: 2.6GB (# params * 2)
439
+
440
+ - Full checkpoint with optimizer states: --
441
+
442
+ - Training throughput: --
443
+
444
+ - Number of epochs: 1
445
+
446
+ - Dates:
447
+
448
+ - Start: 11th March, 2022 11:42am PST
449
+
450
+ - End: 20 May, 2022
451
+
452
+ - Server training location: Île-de-France, France
453
+
454
+ ### **Tokenization**
455
+
456
+ The BLOOM tokenizer ([link](https://huggingface.co/bigscience/tokenizer)) is a learned subword tokenizer trained using:
457
+
458
+ - A byte-level Byte Pair Encoding (BPE) algorithm
459
+
460
+ - A simple pre-tokenization rule, no normalization
461
+
462
+ - A vocabulary size of 250,680
463
+
464
+ It was trained on a subset of a preliminary version of the corpus using alpha-weighting per language.
465
+
466
+
467
+
468
+ ## Citation
469
+
470
+ **Cite as:** BigScience, _BigScience Language Open-science Open-access Multilingual (BLOOM) Language Model_. International, May 2021-May 2022
471
+
472
+ ## Glossary and Calculations
473
+
474
+ *This section defines common terms and how metrics are calculated.*
475
+
476
+ - <a name="loss">**Loss:**</a> A calculation of the difference between what the model has learned and what the data shows ("groundtruth"). The lower the loss, the better. The training process aims to minimize the loss.
477
+
478
+ - <a name="perplexity">**Perplexity:**</a> This is based on what the model estimates the probability of new data is. The lower the perplexity, the better. If the model is 100% correct at predicting the next token it will see, then the perplexity is 1. Mathematically this is calculated using entropy.
479
+
480
+ - <a name="high-stakes">**High-stakes settings:**</a> Such as those identified as "high-risk AI systems" and "unacceptable risk AI systems" in the European Union's proposed [Artificial Intelligence (AI) Act](https://artificialintelligenceact.eu/annexes/).
481
+
482
+ - <a name="critical-decisions">**Critical decisions:**</a> Such as those defined in [the United States' proposed Algorithmic Accountability Act](https://www.congress.gov/117/bills/s3572/BILLS-117s3572is.pdf).
483
+
484
+ - <a name="human-rights">**Human rights:**</a> Includes those rights defined in the [Universal Declaration of Human Rights](https://www.un.org/sites/un2.un.org/files/2021/03/udhr.pdf).
485
+
486
+ - <a name="personal-data-and-information">**Personal Data and Personal Information:**</a> Personal data and information is defined in multiple data protection regulations, such as "[personal data](https://gdpr-info.eu/issues/personal-data/)" in the [European Union's General Data Protection Regulation](https://gdpr-info.eu); and "personal information" in the Republic of South Africa's [Protection of Personal Information Act](https://www.gov.za/sites/default/files/gcis_document/201409/3706726-11act4of2013popi.pdf), The People's Republic of China's [Personal information protection law](http://en.npc.gov.cn.cdurl.cn/2021-12/29/c_694559.htm).
487
+
488
+ - <a name="sensitive-characteristics">**Sensitive characteristics:**</a> This includes specifically protected categories in human rights (see [UHDR, Article 2](https://www.un.org/sites/un2.un.org/files/2021/03/udhr.pdf)) and personal information regulation (see GDPR, [Article 9; Protection of Personal Information Act, Chapter 1](https://www.gov.za/sites/default/files/gcis_document/201409/3706726-11act4of2013popi.pdf))
489
+
490
+ - <a name="deception">**Deception:**</a> Doing something to intentionally mislead individuals to believe something that is false, such as by creating deadbots or chatbots on social media posing as real people, or generating text documents without making consumers aware that the text is machine generated.
491
+
492
+
493
+ ## More Information
494
+
495
+
496
+ ### Dataset Creation
497
+
498
+ Blog post detailing the design choices during the dataset creation: https://bigscience.huggingface.co/blog/building-a-tb-scale-multilingual-dataset-for-language-modeling
499
+
500
+ ### Technical Specifications
501
+
502
+ Blog post summarizing how the architecture, size, shape, and pre-training duration where selected: https://bigscience.huggingface.co/blog/what-language-model-to-train-if-you-have-two-million-gpu-hours
503
+
504
+ More details on the architecture/optimizer: https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml
505
+
506
+ Blog post on the hardware/engineering side: https://bigscience.huggingface.co/blog/which-hardware-to-train-a-176b-parameters-model
507
+
508
+ Details on the distributed setup used for the training: https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml
509
+
510
+ Tensorboard updated during the training: https://huggingface.co/bigscience/tr11-176B-ml-logs/tensorboard#scalars&tagFilter=loss
511
+
512
+ Insights on how to approach training, negative results: https://github.com/bigscience-workshop/bigscience/blob/master/train/lessons-learned.md
513
+
514
+ Details on the obstacles overcome during the preparation on the engineering side (instabilities, optimization of training throughput, so many technical tricks and questions): https://github.com/bigscience-workshop/bigscience/blob/master/train/tr11-176B-ml/chronicles.md
515
+
516
+ ### Initial Results
517
+
518
+ Initial prompting experiments using interim checkpoints: https://huggingface.co/spaces/bigscience/bloom-book
519
+
520
+ ## Model Card Authors
521
+ *Ordered roughly chronologically and by amount of time spent.*
522
+
523
+ Margaret Mitchell, Giada Pistilli, Yacine Jernite, Ezinwanne Ozoani, Marissa Gerchick, Nazneen Rajani, Sasha Luccioni, Irene Solaiman, Maraim Masoud, Somaieh Nikpoor, Carlos Muñoz Ferrandis, Stas Bekman, Christopher Akiki, Danish Contractor, David Lansky, Angelina McMillan-Major, Tristan Thrush, Suzana Ilić, Gérard Dupont, Shayne Longpre, Manan Dey, Stella Biderman, Douwe Kiela, Emi Baylor, Teven Le Scao, Aaron Gokaslan, Julien Launay, Niklas Muennighoff
524
+
525
+ ## Model Card Contact
526
+
527
+ **Send Questions to:** bigscience-contact@googlegroups.com