|
import torch |
|
import numpy as np |
|
from typing import Dict, Sequence, Tuple, Union |
|
|
|
from .data_collator import DynamicDataCollatorWithPadding |
|
|
|
from .peft_trainer import PeftTrainer |
|
|
|
from .other import get_logger |
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
def compute_accuracy(eval_preds: Sequence[Union[np.ndarray, Tuple[np.ndarray]]]) -> Dict[str, float]: |
|
preds, _ = eval_preds |
|
preds = np.array(preds) |
|
return {"accuracy": (preds[:, 0] > preds[:, 1]).sum() / len(preds)} |
|
|
|
|
|
class PairwiseDataCollatorWithPadding(DynamicDataCollatorWithPadding): |
|
r""" |
|
Data collator for pairwise data. |
|
""" |
|
|
|
def __call__(self, features: Sequence[Dict[str, Union[torch.Tensor, Sequence[int]]]]) -> Dict[str, torch.Tensor]: |
|
r""" |
|
Pads batched data to the longest sequence in the batch. |
|
|
|
We generate 2 * n examples where the first n examples represent chosen examples and |
|
the last n examples represent rejected examples. |
|
""" |
|
features = [{"input_ids": feature[key]} for key in ("accept_ids", "reject_ids") for feature in features] |
|
return super().__call__(features) |
|
|
|
|
|
class PairwisePeftTrainer(PeftTrainer): |
|
r""" |
|
Inherits PeftTrainer to compute pairwise loss. |
|
""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.can_return_loss = True |
|
|
|
def compute_loss(self, model, inputs, return_outputs=False): |
|
r""" |
|
Computes pairwise loss. The first n examples are chosen and the last n examples are rejected. |
|
|
|
We use score on the EOS token to represent reward of the whole sentence. |
|
|
|
Subclass and override to inject custom behavior. It should not be directly used by external scripts. |
|
""" |
|
batch_size = inputs["input_ids"].size(0) // 2 |
|
_, _, values = model(**inputs) |
|
r_accept, r_reject = values[:, -1].split(batch_size, dim=0) |
|
loss = -torch.log(torch.sigmoid(r_accept - r_reject)).mean() |
|
return (loss, torch.stack((r_accept, r_reject), dim=-1)) if return_outputs else loss |
|
|