Laurie's picture
Add src folder
abbcb88
raw
history blame
25.2 kB
import os
import sys
import torch
import hashlib
from itertools import chain
from typing import List, Literal, Optional, Tuple
import transformers
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
HfArgumentParser,
Seq2SeqTrainingArguments,
BitsAndBytesConfig
)
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
from transformers.modeling_utils import PreTrainedModel
from transformers.tokenization_utils import PreTrainedTokenizer
import datasets
from datasets import Dataset, concatenate_datasets, load_dataset
from peft import (
PeftModel,
TaskType,
LoraConfig,
get_peft_model
)
from peft.utils import CONFIG_NAME, WEIGHTS_NAME
from trl import AutoModelForCausalLMWithValueHead
from .config import (
ModelArguments,
DataTrainingArguments,
FinetuningArguments,
GeneratingArguments
)
from .template import Template
from .other import (
get_logger,
load_trainable_params,
load_valuehead_params,
print_trainable_params,
prepare_model_for_training,
IGNORE_INDEX
)
check_min_version("4.29.1")
require_version("datasets>=2.12.0", "To fix: pip install datasets>=2.12.0")
require_version("accelerate>=0.19.0", "To fix: pip install accelerate>=0.19.0")
require_version("peft>=0.3.0", "To fix: pip install peft>=0.3.0")
require_version("trl>=0.4.4", "To fix: pip install trl>=0.4.4")
logger = get_logger(__name__)
def _init_adapter(
model: PreTrainedModel,
model_args: ModelArguments,
finetuning_args: FinetuningArguments,
is_trainable: bool,
is_mergeable: bool
) -> PreTrainedModel:
r"""
Initializes the adapters.
Support full-parameter, freeze and LoRA training.
Note that the trainable parameters must be cast to float32.
"""
if finetuning_args.finetuning_type == "none" and is_trainable:
raise ValueError("You cannot use finetuning_type=none while training.")
if finetuning_args.finetuning_type == "full":
logger.info("Fine-tuning method: Full")
model = model.float()
if finetuning_args.finetuning_type == "freeze":
logger.info("Fine-tuning method: Freeze")
for name, param in model.named_parameters():
if not any(trainable_layer in name for trainable_layer in finetuning_args.trainable_layers):
param.requires_grad_(False)
else:
param.data = param.data.to(torch.float32)
if model_args.checkpoint_dir is not None:
if finetuning_args.finetuning_type != "lora":
assert is_mergeable and len(model_args.checkpoint_dir) == 1, "Only LoRA tuning accepts multiple checkpoints."
assert load_trainable_params(model, model_args.checkpoint_dir[0]), "Model checkpoint is not correctly loaded."
else:
assert is_mergeable or len(model_args.checkpoint_dir) == 1, "Quantized model only accepts a single checkpoint."
if finetuning_args.finetuning_type == "lora":
logger.info("Fine-tuning method: LoRA")
lastest_checkpoint = None
if model_args.checkpoint_dir is not None:
if os.path.exists(os.path.join(model_args.checkpoint_dir[0], WEIGHTS_NAME)) and \
not os.path.exists(os.path.join(model_args.checkpoint_dir[0], CONFIG_NAME)):
raise ValueError("The given checkpoint may be not a LoRA checkpoint, \
please specify `--finetuning_type full/freeze` instead.")
if (is_trainable and model_args.resume_lora_training) or (not is_mergeable): # continually train on the lora weights
checkpoints_to_merge, lastest_checkpoint = model_args.checkpoint_dir[:-1], model_args.checkpoint_dir[-1]
else:
checkpoints_to_merge = model_args.checkpoint_dir
for checkpoint in checkpoints_to_merge:
model = PeftModel.from_pretrained(model, checkpoint)
model = model.merge_and_unload()
if len(checkpoints_to_merge) > 0:
logger.info("Merged {} model checkpoint(s).".format(len(checkpoints_to_merge)))
if lastest_checkpoint is not None: # resume lora training or quantized inference
model = PeftModel.from_pretrained(model, lastest_checkpoint, is_trainable=is_trainable)
if is_trainable and lastest_checkpoint is None: # create new lora weights while training
lora_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
r=finetuning_args.lora_rank,
lora_alpha=finetuning_args.lora_alpha,
lora_dropout=finetuning_args.lora_dropout,
target_modules=finetuning_args.lora_target
)
model = get_peft_model(model, lora_config)
if model_args.checkpoint_dir is not None:
logger.info("Loaded fine-tuned model from checkpoint(s): {}".format(",".join(model_args.checkpoint_dir)))
return model
def load_pretrained(
model_args: ModelArguments,
finetuning_args: FinetuningArguments,
is_trainable: Optional[bool] = False,
stage: Optional[Literal["pt", "sft", "rm", "ppo"]] = "sft"
) -> Tuple[PreTrainedModel, PreTrainedTokenizer]:
r"""
Loads pretrained model and tokenizer.
Support both training and inference.
"""
if (not is_trainable) and model_args.checkpoint_dir is None:
logger.warning("Checkpoint is not found at evaluation, load the original model.")
finetuning_args = FinetuningArguments(finetuning_type="none")
assert stage in ["pt", "sft"] or finetuning_args.finetuning_type == "lora", \
"RM and PPO training can only be performed with the LoRA method."
config_kwargs = {
"trust_remote_code": True,
"cache_dir": model_args.cache_dir,
"revision": model_args.model_revision,
"use_auth_token": True if model_args.use_auth_token else None,
}
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
use_fast=model_args.use_fast_tokenizer,
padding_side="left",
**config_kwargs
)
tokenizer.pad_token_id = 0 if tokenizer.pad_token_id is None else tokenizer.pad_token_id # set as the <unk> token
tokenizer.pad_token_id = 0 if tokenizer.pad_token_id == 64000 else tokenizer.pad_token_id # for baichuan model (older version)
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
is_mergeable = True
# Quantization configurations (using bitsandbytes library).
if model_args.quantization_bit is not None:
if model_args.quantization_bit == 8:
require_version("bitsandbytes>=0.37.0", "To fix: pip install bitsandbytes>=0.37.0")
config_kwargs["load_in_8bit"] = True
config_kwargs["quantization_config"] = BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_threshold=6.0
)
elif model_args.quantization_bit == 4:
require_version("bitsandbytes>=0.39.0", "To fix: pip install bitsandbytes>=0.39.0")
require_version("transformers>=4.30.1", "To fix: pip install transformers>=4.30.1")
require_version("accelerate>=0.20.3", "To fix: pip install accelerate>=0.20.3")
require_version("peft>=0.4.0.dev0", "To fix: pip install git+https://github.com/huggingface/peft.git")
config_kwargs["load_in_4bit"] = True
config_kwargs["quantization_config"] = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=model_args.compute_dtype,
bnb_4bit_use_double_quant=model_args.double_quantization,
bnb_4bit_quant_type=model_args.quantization_type
)
is_mergeable = False
config_kwargs["device_map"] = {"": int(os.environ.get("LOCAL_RANK", "0"))}
logger.info("Quantizing model to {} bit.".format(model_args.quantization_bit))
if not is_trainable: # `device_map=auto` should be used for inference only
config_kwargs["device_map"] = "auto"
# Load and prepare pretrained models (without valuehead).
model = AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path,
config=config,
torch_dtype=torch.bfloat16 if model_args.compute_dtype == torch.bfloat16 else torch.float16,
low_cpu_mem_usage=True,
**config_kwargs
)
model = prepare_model_for_training(model, finetuning_args.finetuning_type) if is_trainable else model
model = _init_adapter(model, model_args, finetuning_args, is_trainable, is_mergeable)
if stage == "rm" or stage == "ppo": # add value head
model = AutoModelForCausalLMWithValueHead.from_pretrained(model)
if stage == "rm" and model_args.checkpoint_dir is not None: # load valuehead weights to evaluate reward model
logger.warning("Only the last checkpoint containing valuehead will be loaded as the valuehead.")
if load_valuehead_params(model, model_args.checkpoint_dir[-1]):
model.v_head.load_state_dict({
"summary.weight": getattr(model, "reward_head_weight"),
"summary.bias": getattr(model, "reward_head_bias")
})
if stage == "ppo": # load reward model
assert is_trainable, "PPO stage cannot be performed at evaluation."
assert model_args.reward_model is not None, "Reward model is necessary for PPO training."
logger.info("Load reward model from {}".format(model_args.reward_model))
model.pretrained_model.load_adapter(model_args.reward_model, "reward", is_trainable=False)
assert load_valuehead_params(model, model_args.reward_model), "Reward model is not correctly loaded."
if not is_trainable:
model.requires_grad_(False) # fix all model params
model = model.half() if model_args.quantization_bit is None else model # cast from fp32 to fp16
print_trainable_params(model)
return model, tokenizer
def prepare_args(
stage: Literal["pt", "sft", "rm", "ppo"]
) -> Tuple[ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments, FinetuningArguments]:
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments, FinetuningArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # Provide arguments with a json file.
model_args, data_args, training_args, finetuning_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args, finetuning_args = parser.parse_args_into_dataclasses()
# Setup logging
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
log_level = training_args.get_process_log_level()
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Check arguments (do not check finetuning_args since it may be loaded from checkpoints)
if stage != "sft" and training_args.predict_with_generate:
raise ValueError("`predict_with_generate` cannot be set as True at PT, RM and PPO stages.")
if training_args.do_train and training_args.predict_with_generate:
raise ValueError("`predict_with_generate` cannot be set as True while training.")
if training_args.do_predict and (not training_args.predict_with_generate):
raise ValueError("Please enable `predict_with_generate` to save model predictions.")
if model_args.quantization_bit is not None and finetuning_args.finetuning_type != "lora":
raise ValueError("Quantization is only compatible with the LoRA method.")
if model_args.quantization_bit is not None and (not training_args.do_train):
logger.warning("Evaluating model in 4/8-bit mode may cause lower scores.")
if training_args.do_train and (not training_args.fp16):
logger.warning("We recommend enable fp16 mixed precision training.")
if data_args.prompt_template == "alpaca":
logger.warning("Please specify `prompt_template` if you are using other pre-trained models.")
if training_args.local_rank != -1 and training_args.ddp_find_unused_parameters is None:
logger.warning("`ddp_find_unused_parameters` needs to be set as False in DDP training.")
training_args.ddp_find_unused_parameters = False
training_args.optim = "adamw_torch" if training_args.optim == "adamw_hf" else training_args.optim # suppress warning
if model_args.quantization_bit is not None:
if training_args.fp16:
model_args.compute_dtype = torch.float16
elif training_args.bf16:
model_args.compute_dtype = torch.bfloat16
else:
model_args.compute_dtype = torch.float32
# Log on each process the small summary:
logger.info(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}\n"
+ f" distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# Set seed before initializing model.
transformers.set_seed(training_args.seed)
return model_args, data_args, training_args, finetuning_args
def prepare_infer_args() -> Tuple[ModelArguments, DataTrainingArguments, FinetuningArguments, GeneratingArguments]:
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, FinetuningArguments, GeneratingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # Provide arguments with a json file.
model_args, data_args, finetuning_args, generating_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, finetuning_args, generating_args = parser.parse_args_into_dataclasses()
if model_args.quantization_bit is not None and finetuning_args.finetuning_type != "lora":
raise ValueError("Quantization is only compatible with the LoRA method.")
if data_args.prompt_template == "alpaca":
logger.warning("Please specify `prompt_template` if you are using other pre-trained models.")
return model_args, data_args, finetuning_args, generating_args
def prepare_data(
model_args: ModelArguments,
data_args: DataTrainingArguments
) -> Dataset:
def checksum(file_path, hash):
with open(file_path, "rb") as datafile:
binary_data = datafile.read()
sha1 = hashlib.sha1(binary_data).hexdigest()
if sha1 != hash:
logger.warning("Checksum failed for {}. It may vary depending on the platform.".format(file_path))
max_samples = data_args.max_samples
all_datasets: List[Dataset] = [] # support multiple datasets
for dataset_attr in data_args.dataset_list:
logger.info("Loading dataset {}...".format(dataset_attr))
if dataset_attr.load_from == "hf_hub":
raw_datasets = load_dataset(dataset_attr.dataset_name, cache_dir=model_args.cache_dir)
elif dataset_attr.load_from == "script":
raw_datasets = load_dataset(
os.path.join(data_args.dataset_dir, dataset_attr.dataset_name),
cache_dir=model_args.cache_dir
)
elif dataset_attr.load_from == "file":
data_file = os.path.join(data_args.dataset_dir, dataset_attr.file_name)
extension = dataset_attr.file_name.split(".")[-1]
if extension == "csv":
file_type = "csv"
elif extension == "json" or extension == "jsonl":
file_type = "json"
else:
file_type = "text"
if dataset_attr.file_sha1 is not None:
checksum(data_file, dataset_attr.file_sha1)
else:
logger.warning("Checksum failed: missing SHA-1 hash value in dataset_info.json.")
raw_datasets = load_dataset(
file_type,
data_files=data_file,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None
)
else:
raise NotImplementedError
dataset = raw_datasets[data_args.split]
if max_samples is not None:
max_samples_temp = min(len(dataset), max_samples)
dataset = dataset.select(range(max_samples_temp))
dummy_data = [None] * len(dataset)
for column_name, target_name in [
("prompt_column", "prompt"),
("query_column", "query"),
("response_column", "response"),
("history_column", "history")
]: # every dataset will have 4 columns same as each other
if getattr(dataset_attr, column_name) != target_name:
if getattr(dataset_attr, column_name):
dataset = dataset.rename_column(getattr(dataset_attr, column_name), target_name)
else: # None or empty string
dataset = dataset.add_column(target_name, dummy_data)
all_datasets.append(dataset)
if len(data_args.dataset_list) == 1:
all_datasets = all_datasets[0]
else:
all_datasets = concatenate_datasets(all_datasets)
return all_datasets
def preprocess_data(
dataset: Dataset,
tokenizer: PreTrainedTokenizer,
data_args: DataTrainingArguments,
training_args: Seq2SeqTrainingArguments,
stage: Literal["pt", "sft", "rm", "ppo"]
) -> Dataset:
column_names = list(dataset.column_names)
prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
prompt_template = Template(data_args.prompt_template)
# support question with a single answer or multiple answers
def get_dialog(examples):
for i in range(len(examples["prompt"])):
if examples["prompt"][i] and examples["response"][i]:
query, answer = examples["prompt"][i], examples["response"][i]
query = query + "\n" + examples["query"][i] if examples["query"][i] else query
dialog = prompt_template.get_dialog(query, answer, examples["history"][i], prefix)
yield dialog
def preprocess_pretrain_dataset(examples):
# build grouped texts with format `[BOS] X1 X2 X3 ...` (without [EOS])
text_ids = tokenizer(examples["prompt"], add_special_tokens=False)["input_ids"]
concatenated_ids = list(chain(*text_ids))
total_length = len(concatenated_ids)
block_size = data_args.max_source_length - 1
# we drop the small remainder, and if the total_length < block_size, we exclude this batch
total_length = (total_length // block_size) * block_size
# split by chunks of max_source_length
result = [[tokenizer.bos_token_id] + concatenated_ids[i: i + block_size]
for i in range(0, total_length, block_size)]
return {
"input_ids": result,
"labels": result.copy()
}
def preprocess_supervised_dataset(examples):
# build inputs with format `X [BOS] Y [EOS]` and labels with format `[IGNORE] ... [IGNORE] Y [EOS]`
# for input with history, we build multiple input-label pairs just like:
# https://github.com/lm-sys/FastChat/blob/f17c092f64840fa6354ed52789dccb2daa793d0b/fastchat/train/train.py#L112
model_inputs = {"input_ids": [], "labels": []}
for dialog in get_dialog(examples):
input_ids, labels = [], []
for i in range(len(dialog) // 2):
source_ids = tokenizer.encode(text=dialog[2*i], add_special_tokens=False)
target_ids = tokenizer.encode(text=dialog[2*i+1], add_special_tokens=False)
input_ids += source_ids + [tokenizer.bos_token_id] + target_ids + [tokenizer.eos_token_id]
labels += [IGNORE_INDEX] * (len(source_ids) + 1) + target_ids + [tokenizer.eos_token_id]
model_inputs["input_ids"].append(input_ids[:data_args.max_source_length + data_args.max_target_length])
model_inputs["labels"].append(labels[:data_args.max_source_length + data_args.max_target_length])
return model_inputs
def preprocess_unsupervised_dataset(examples):
# build inputs with format `X [BOS]` and labels with format `Y [BOS]`
model_inputs = {"input_ids": [], "labels": []}
for dialog in get_dialog(examples):
prompt, answer = "".join(dialog[:-1]), dialog[-1]
source_ids = tokenizer.encode(text=prompt, add_special_tokens=False)
target_ids = tokenizer.encode(text=answer, add_special_tokens=False)
if len(source_ids) > data_args.max_source_length - 1: # bos token
source_ids = source_ids[:data_args.max_source_length - 1]
if len(target_ids) > data_args.max_target_length - 1: # bos token
target_ids = target_ids[:data_args.max_target_length - 1]
input_ids = source_ids + [tokenizer.bos_token_id]
labels = target_ids + [tokenizer.bos_token_id]
model_inputs["input_ids"].append(input_ids)
model_inputs["labels"].append(labels)
return model_inputs
def preprocess_pairwise_dataset(examples):
# build input pairs with format `X [BOS] Y1 [EOS]` and `X [BOS] Y2 [EOS]`
model_inputs = {"accept_ids": [], "reject_ids": []}
for dialog in get_dialog(examples):
prompt, answer = "".join(dialog[:-1]), dialog[-1]
source_ids = tokenizer.encode(text=prompt, add_special_tokens=False)
accept_ids = tokenizer.encode(text=answer[0], add_special_tokens=False)
reject_ids = tokenizer.encode(text=answer[1], add_special_tokens=False)
if len(source_ids) > data_args.max_source_length - 1: # bos token
source_ids = source_ids[:data_args.max_source_length - 1]
if len(accept_ids) > data_args.max_target_length - 1: # eos token
accept_ids = accept_ids[:data_args.max_target_length - 1]
if len(reject_ids) > data_args.max_target_length - 1: # eos token
reject_ids = reject_ids[:data_args.max_target_length - 1]
accept_ids = source_ids + [tokenizer.bos_token_id] + accept_ids + [tokenizer.eos_token_id]
reject_ids = source_ids + [tokenizer.bos_token_id] + reject_ids + [tokenizer.eos_token_id]
model_inputs["accept_ids"].append(accept_ids)
model_inputs["reject_ids"].append(reject_ids)
return model_inputs
def print_supervised_dataset_example(example):
print("input_ids:\n{}".format(example["input_ids"]))
print("inputs:\n{}".format(tokenizer.decode(example["input_ids"])))
print("label_ids:\n{}".format(example["labels"]))
print("labels:\n{}".format(
tokenizer.decode([d if d != IGNORE_INDEX else tokenizer.pad_token_id for d in example["labels"]]))
)
def print_pairwise_dataset_example(example):
print("accept_ids:\n{}".format(example["accept_ids"]))
print("accepts:\n{}".format(tokenizer.decode(example["accept_ids"])))
print("reject_ids:\n{}".format(example["reject_ids"]))
print("rejects:\n{}".format(tokenizer.decode(example["reject_ids"])))
def print_unsupervised_dataset_example(example):
print("input_ids:\n{}".format(example["input_ids"]))
print("inputs:\n{}".format(tokenizer.decode(example["input_ids"])))
if stage == "pt":
preprocess_function = preprocess_pretrain_dataset
elif stage == "sft":
preprocess_function = preprocess_unsupervised_dataset \
if training_args.predict_with_generate else preprocess_supervised_dataset
elif stage == "rm":
preprocess_function = preprocess_pairwise_dataset
elif stage == "ppo":
preprocess_function = preprocess_unsupervised_dataset
with training_args.main_process_first(desc="dataset map pre-processing"):
dataset = dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on dataset"
)
if stage == "pt":
print_unsupervised_dataset_example(dataset[0])
elif stage == "sft":
print_supervised_dataset_example(dataset[0])
elif stage == "rm":
print_pairwise_dataset_example(dataset[0])
elif stage == "ppo":
print_unsupervised_dataset_example(dataset[0])
return dataset