Laurie's picture
Add src folder
abbcb88
raw
history blame
2.74 kB
# coding=utf-8
# Implements parameter-efficient PPO training of fine-tuned models.
# This code is inspired by:
# https://github.com/lvwerra/trl/blob/main/examples/sentiment/scripts/gpt-neox-20b_peft/gpt-neo-20b_sentiment_peft.py
import math
from torch.optim import AdamW
from transformers.optimization import get_scheduler
from trl import PPOConfig
from utils import (
DynamicDataCollatorWithPadding,
PPOPeftTrainer,
LogCallback,
load_pretrained,
prepare_args,
prepare_data,
preprocess_data,
plot_loss
)
def main():
# Prepare pretrained model and dataset
model_args, data_args, training_args, finetuning_args = prepare_args(stage="ppo")
dataset = prepare_data(model_args, data_args)
model, tokenizer = load_pretrained(model_args, finetuning_args, training_args.do_train, stage="ppo")
dataset = preprocess_data(dataset, tokenizer, data_args, training_args, stage="ppo")
data_collator = DynamicDataCollatorWithPadding(tokenizer)
ppo_config = PPOConfig(
model_name=model_args.model_name_or_path,
learning_rate=training_args.learning_rate,
mini_batch_size=training_args.per_device_train_batch_size,
batch_size=training_args.per_device_train_batch_size,
gradient_accumulation_steps=training_args.gradient_accumulation_steps,
ppo_epochs=1,
max_grad_norm=training_args.max_grad_norm
)
optimizer = AdamW(filter(lambda p: p.requires_grad, model.parameters()), lr=ppo_config.learning_rate)
total_train_batch_size = \
training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size
lr_scheduler = get_scheduler(
training_args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=training_args.warmup_steps,
num_training_steps=(training_args.num_train_epochs * math.ceil(len(dataset) / total_train_batch_size))
)
# Initialize our Trainer
ppo_trainer = PPOPeftTrainer(
training_args=training_args,
finetuning_args=finetuning_args,
callbacks=[LogCallback()],
config=ppo_config,
model=model,
ref_model=None,
tokenizer=tokenizer,
dataset=dataset,
data_collator=data_collator,
optimizer=optimizer,
lr_scheduler=lr_scheduler
)
ppo_trainer.ppo_train(max_target_length=data_args.max_target_length)
ppo_trainer.save_model()
ppo_trainer.save_state() # must be after save_model
if ppo_trainer.is_world_process_zero() and model_args.plot_loss:
plot_loss(training_args.output_dir, keys=["loss", "reward"])
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()