Adapters
medical
Laurent1's picture
Update README.md
11ff4c3
|
raw
history blame
2.44 kB
---
license: apache-2.0
datasets:
- Laurent1/MedQuad-MedicalQnADataset_128tokens_max
library_name: adapter-transformers
tags:
- medical
---
# Model Card for mpt-7b-instruct2-QLoRa-medical-QA
![image/gif](https://cdn-uploads.huggingface.co/production/uploads/6489e1e3eb763749c663f40c/PUBFPpFxsrWRlkYzh7lwX.gif)
<font color="FF0000" size="5"> <b>
This is a QA model for answering medical questions<br /> </b></font>
<br><b>Foundation Model : https://huggingface.co/ibm/mpt-7b-instruct2 <br />
Dataset : https://huggingface.co/datasets/Laurent1/MedQuad-MedicalQnADataset_128tokens_max <br /></b>
The model has been fine tuned with 2 x GPU T4 (RAM : 2 x 14.8GB) + CPU (RAM : 29GB). <br />
## <b>Model Details</b>
The model is based upon the foundation model : ibm/mpt-7b-instruct2 (Apache 2.0 License).<br />
It has been tuned with Supervised Fine-tuning Trainer and PEFT LoRa.<br />
### Librairies
<ul>
<li>bitsandbytes</li>
<li>einops</li>
<li>peft</li>
<li>trl</li>
<li>datasets</li>
<li>transformers</li>
<li>torch</li>
</ul>
### Notebook used for the training
https://colab.research.google.com/drive/14nxSP5UuJcnIJtEERyk5nehBL3W03FR3?hl=fr
=> Improvements can be achieved by increasing the number of steps and using the full dataset. <br />
### Direct Use
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6489e1e3eb763749c663f40c/b1Vboznz82PwtN4rLNqGC.png)
## <b>Bias, Risks, and Limitations</b>
In order to reduce training duration, the model has been trained only with the first 5100 rows of the dataset.<br />
<font color="FF0000">
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.<br />
Generation of plausible yet incorrect factual information, termed hallucination, is an unsolved issue in large language models.<br />
</font>
## <b>Training Details</b>
<ul>
<li>per_device_train_batch_size = 1</li>
<li>gradient_accumulation_steps = 16</li>
<li>epoch = 5</li>
<li>2 x GPU T4 (RAM : 14.8GB) + CPU (RAM : 29GB)</li>
</ul>
### Training Data
https://huggingface.co/datasets/Laurent1/MedQuad-MedicalQnADataset_128tokens_max
#### Training Hyperparameters
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6489e1e3eb763749c663f40c/C6XTGVrn4D1Sj2kc9Dq2O.png)
#### Times
Training duration : 6287.4s
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6489e1e3eb763749c663f40c/WTQ6v-ruMLF7IevXZDham.png)