Lasion's picture
End of training
b880fbb verified
|
raw
history blame
2.19 kB
metadata
license: cc-by-nc-4.0
base_model: nguyenvulebinh/wav2vec2-base-vi
tags:
  - generated_from_trainer
datasets:
  - common_voice_16_1
metrics:
  - wer
model-index:
  - name: wav2vec2-common-voice-16_1_vi
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_16_1
          type: common_voice_16_1
          config: vi
          split: None
          args: vi
        metrics:
          - name: Wer
            type: wer
            value: 0.9998983326555511

wav2vec2-common-voice-16_1_vi

This model is a fine-tuned version of nguyenvulebinh/wav2vec2-base-vi on the common_voice_16_1 dataset. It achieves the following results on the evaluation set:

  • Loss: 3.5320
  • Wer: 0.9999

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
23.1642 4.2373 500 9.3416 0.9999
4.3182 8.4746 1000 3.5487 0.9999
3.4768 12.7119 1500 3.5353 0.9999
3.4681 16.9492 2000 3.5314 0.9999
3.4635 21.1864 2500 3.5318 0.9999
3.4642 25.4237 3000 3.5313 0.9999
3.4753 29.6610 3500 3.5320 0.9999

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1