LanguageBind commited on
Commit
de54108
1 Parent(s): 618b661

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +235 -0
README.md CHANGED
@@ -1,3 +1,238 @@
1
  ---
2
  license: apache-2.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
  ---
4
+
5
+
6
+ <p align="center">
7
+ <img src="https://z1.ax1x.com/2023/11/07/pil4sqH.png" width="150" style="margin-bottom: 0.2;"/>
8
+ <p>
9
+ <h2 align="center"> <a href="https://arxiv.org/abs/2311.10122">Video-LLaVA: Learning United Visual Representation by Alignment Before Projection</a></h2>
10
+ <h5 align="center"> If you like our project, please give us a star ⭐ on GitHub for latest update. </h2>
11
+
12
+
13
+
14
+
15
+ ## 📰 News
16
+ * **[2024.01.27]** 👀👀👀 Our [MoE-LLaVA](https://github.com/PKU-YuanGroup/MoE-LLaVA) is released! A sparse model with 3B parameters outperformed the dense model with 7B parameters.
17
+ * **[2024.01.17]** 🔥🔥🔥 Our [LanguageBind](https://github.com/PKU-YuanGroup/LanguageBind) has been accepted at ICLR 2024!
18
+ * **[2024.01.16]** 🔥🔥🔥 We reorganize the code and support LoRA fine-tuning, checking [finetune_lora.sh](scripts/v1_5/finetune_lora.sh).
19
+ * **[2023.11.30]** 🤝 Thanks to the generous contributions of the community, the [OpenXLab's demo](https://openxlab.org.cn/apps/detail/houshaowei/Video-LLaVA) is now accessible.
20
+ * **[2023.11.23]** We are training a new and powerful model.
21
+ * **[2023.11.21]** 🤝 Check out the [replicate demo](https://replicate.com/nateraw/video-llava), created by [@nateraw](https://github.com/nateraw), who has generously supported our research!
22
+ * **[2023.11.20]** 🤗 [Hugging Face demo](https://huggingface.co/spaces/LanguageBind/Video-LLaVA) and **all codes & datasets** are available now! Welcome to **watch** 👀 this repository for the latest updates.
23
+
24
+ ## 😮 Highlights
25
+
26
+ Video-LLaVA exhibits remarkable interactive capabilities between images and videos, despite the absence of image-video pairs in the dataset.
27
+
28
+ ### 💡 Simple baseline, learning united visual representation by alignment before projection
29
+ - With **the binding of unified visual representations to the language feature space**, we enable an LLM to perform visual reasoning capabilities on both images and videos simultaneously.
30
+
31
+ ### 🔥 High performance, complementary learning with video and image
32
+ - Extensive experiments demonstrate **the complementarity of modalities**, showcasing significant superiority when compared to models specifically designed for either images or videos.
33
+
34
+
35
+ ## 🤗 Demo
36
+
37
+ ### Gradio Web UI
38
+
39
+ Highly recommend trying out our web demo by the following command, which incorporates all features currently supported by Video-LLaVA. We also provide [online demo](https://huggingface.co/spaces/LanguageBind/Video-LLaVA) in Huggingface Spaces.
40
+ ```bash
41
+ python -m videollava.serve.gradio_web_server
42
+ ```
43
+
44
+
45
+
46
+ ### CLI Inference
47
+
48
+ ```bash
49
+ python -m videollava.serve.cli --model-path "LanguageBind/Video-LLaVA-7B" --file "path/to/your/video.mp4" --load-4bit
50
+ ```
51
+
52
+ ```bash
53
+ python -m videollava.serve.cli --model-path "LanguageBind/Video-LLaVA-7B" --file "path/to/your/image.jpg" --load-4bit
54
+ ```
55
+
56
+
57
+
58
+ ## 🛠️ Requirements and Installation
59
+ * Python >= 3.10
60
+ * Pytorch == 2.0.1
61
+ * CUDA Version >= 11.7
62
+ * Install required packages:
63
+ ```bash
64
+ git clone https://github.com/PKU-YuanGroup/Video-LLaVA
65
+ cd Video-LLaVA
66
+ conda create -n videollava python=3.10 -y
67
+ conda activate videollava
68
+ pip install --upgrade pip # enable PEP 660 support
69
+ pip install -e .
70
+ pip install -e ".[train]"
71
+ pip install flash-attn --no-build-isolation
72
+ pip install decord opencv-python git+https://github.com/facebookresearch/pytorchvideo.git@28fe037d212663c6a24f373b94cc5d478c8c1a1d
73
+ ```
74
+
75
+ ## 🤖 API
76
+ **We open source all codes.** If you want to load the model (e.g. ```LanguageBind/Video-LLaVA-7B```) on local, you can use the following code snippets.
77
+
78
+ ### Inference for image
79
+ ```python
80
+ import torch
81
+ from videollava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
82
+ from videollava.conversation import conv_templates, SeparatorStyle
83
+ from videollava.model.builder import load_pretrained_model
84
+ from videollava.utils import disable_torch_init
85
+ from videollava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
86
+
87
+ def main():
88
+ disable_torch_init()
89
+ image = 'videollava/serve/examples/extreme_ironing.jpg'
90
+ inp = 'What is unusual about this image?'
91
+ model_path = 'LanguageBind/Video-LLaVA-7B'
92
+ cache_dir = 'cache_dir'
93
+ device = 'cuda'
94
+ load_4bit, load_8bit = True, False
95
+ model_name = get_model_name_from_path(model_path)
96
+ tokenizer, model, processor, _ = load_pretrained_model(model_path, None, model_name, load_8bit, load_4bit, device=device, cache_dir=cache_dir)
97
+ image_processor = processor['image']
98
+ conv_mode = "llava_v1"
99
+ conv = conv_templates[conv_mode].copy()
100
+ roles = conv.roles
101
+
102
+ image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values']
103
+ if type(image_tensor) is list:
104
+ tensor = [image.to(model.device, dtype=torch.float16) for image in image_tensor]
105
+ else:
106
+ tensor = image_tensor.to(model.device, dtype=torch.float16)
107
+
108
+ print(f"{roles[1]}: {inp}")
109
+ inp = DEFAULT_IMAGE_TOKEN + '\n' + inp
110
+ conv.append_message(conv.roles[0], inp)
111
+ conv.append_message(conv.roles[1], None)
112
+ prompt = conv.get_prompt()
113
+ input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
114
+ stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
115
+ keywords = [stop_str]
116
+ stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
117
+
118
+ with torch.inference_mode():
119
+ output_ids = model.generate(
120
+ input_ids,
121
+ images=tensor,
122
+ do_sample=True,
123
+ temperature=0.2,
124
+ max_new_tokens=1024,
125
+ use_cache=True,
126
+ stopping_criteria=[stopping_criteria])
127
+
128
+ outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
129
+ print(outputs)
130
+
131
+ if __name__ == '__main__':
132
+ main()
133
+ ```
134
+
135
+ ### Inference for video
136
+ ```python
137
+ import torch
138
+ from videollava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
139
+ from videollava.conversation import conv_templates, SeparatorStyle
140
+ from videollava.model.builder import load_pretrained_model
141
+ from videollava.utils import disable_torch_init
142
+ from videollava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
143
+
144
+ def main():
145
+ disable_torch_init()
146
+ video = 'videollava/serve/examples/sample_demo_1.mp4'
147
+ inp = 'Why is this video funny?'
148
+ model_path = 'LanguageBind/Video-LLaVA-7B'
149
+ cache_dir = 'cache_dir'
150
+ device = 'cuda'
151
+ load_4bit, load_8bit = True, False
152
+ model_name = get_model_name_from_path(model_path)
153
+ tokenizer, model, processor, _ = load_pretrained_model(model_path, None, model_name, load_8bit, load_4bit, device=device, cache_dir=cache_dir)
154
+ video_processor = processor['video']
155
+ conv_mode = "llava_v1"
156
+ conv = conv_templates[conv_mode].copy()
157
+ roles = conv.roles
158
+
159
+ video_tensor = video_processor(video, return_tensors='pt')['pixel_values']
160
+ if type(video_tensor) is list:
161
+ tensor = [video.to(model.device, dtype=torch.float16) for video in video_tensor]
162
+ else:
163
+ tensor = video_tensor.to(model.device, dtype=torch.float16)
164
+
165
+ print(f"{roles[1]}: {inp}")
166
+ inp = ' '.join([DEFAULT_IMAGE_TOKEN] * model.get_video_tower().config.num_frames) + '\n' + inp
167
+ conv.append_message(conv.roles[0], inp)
168
+ conv.append_message(conv.roles[1], None)
169
+ prompt = conv.get_prompt()
170
+ input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
171
+ stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
172
+ keywords = [stop_str]
173
+ stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
174
+
175
+ with torch.inference_mode():
176
+ output_ids = model.generate(
177
+ input_ids,
178
+ images=tensor,
179
+ do_sample=True,
180
+ temperature=0.1,
181
+ max_new_tokens=1024,
182
+ use_cache=True,
183
+ stopping_criteria=[stopping_criteria])
184
+
185
+ outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
186
+ print(outputs)
187
+
188
+ if __name__ == '__main__':
189
+ main()
190
+ ```
191
+
192
+ ## 🗝️ Training & Validating
193
+ The training & validating instruction is in [TRAIN_AND_VALIDATE.md](TRAIN_AND_VALIDATE.md).
194
+
195
+ ## 👍 Acknowledgement
196
+ * [LLaVA](https://github.com/haotian-liu/LLaVA) The codebase we built upon and it is an efficient large language and vision assistant.
197
+ * [Video-ChatGPT](https://github.com/mbzuai-oryx/Video-ChatGPT) Great job contributing the evaluation code and dataset.
198
+
199
+ ## 🙌 Related Projects
200
+ * [LanguageBind](https://github.com/PKU-YuanGroup/LanguageBind) An open source five modalities language-based retrieval framework.
201
+ * [Chat-UniVi](https://github.com/PKU-YuanGroup/Chat-UniVi) This framework empowers the model to efficiently utilize a limited number of visual tokens.
202
+
203
+ ## 🔒 License
204
+ * The majority of this project is released under the Apache 2.0 license as found in the [LICENSE](https://github.com/PKU-YuanGroup/Video-LLaVA/blob/main/LICENSE) file.
205
+ * The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
206
+
207
+ ## ✏️ Citation
208
+ If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil:.
209
+
210
+ ```BibTeX
211
+ @article{lin2023video,
212
+ title={Video-LLaVA: Learning United Visual Representation by Alignment Before Projection},
213
+ author={Lin, Bin and Zhu, Bin and Ye, Yang and Ning, Munan and Jin, Peng and Yuan, Li},
214
+ journal={arXiv preprint arXiv:2311.10122},
215
+ year={2023}
216
+ }
217
+ ```
218
+
219
+ ```BibTeX
220
+ @article{zhu2023languagebind,
221
+ title={LanguageBind: Extending Video-Language Pretraining to N-modality by Language-based Semantic Alignment},
222
+ author={Zhu, Bin and Lin, Bin and Ning, Munan and Yan, Yang and Cui, Jiaxi and Wang, HongFa and Pang, Yatian and Jiang, Wenhao and Zhang, Junwu and Li, Zongwei and others},
223
+ journal={arXiv preprint arXiv:2310.01852},
224
+ year={2023}
225
+ }
226
+ ```
227
+
228
+ <!---->
229
+ ## ✨ Star History
230
+ [![Star History](https://api.star-history.com/svg?repos=PKU-YuanGroup/Video-LLaVA&type=Date)](https://star-history.com/#PKU-YuanGroup/Video-LLaVA&Date)
231
+
232
+ ## 🤝 Contributors
233
+
234
+ <a href="https://github.com/PKU-YuanGroup/Video-LLaVA/graphs/contributors">
235
+ <img src="https://contrib.rocks/image?repo=PKU-YuanGroup/Video-LLaVA" />
236
+ </a>
237
+
238
+