LamaDiab's picture
Updating model weights
7ac9971 verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - dense
  - generated_from_trainer
  - dataset_size:604740
  - loss:MultipleNegativesSymmetricRankingLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
  - source_sentence: casa chandelier
    sentences:
      - new eleganza - 6-999-x
      - casa chandelier
      - chandlier
  - source_sentence: true gold feeding bottle with handle 270 ml 2024144
    sentences:
      - girls feeding bottle
      - baby bottle
      - 100 baby gym leggings - grey
  - source_sentence: sand eel shad soft lure combo eelo 150 25 g ayu/blue
    sentences:
      - fishing
      - fast fishing fishing lure
      - bestway unicorn fantasy ride on
  - source_sentence: farm frites potato chips
    sentences:
      - snacks
      - farm frites chips
      - al-ameed decaf coffee without cardamom
  - source_sentence: diary of a wimpy kid do-it-youself book
    sentences:
      - grand theft auto v (ps5)
      - children english book
      - children book
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy
model-index:
  - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
    results:
      - task:
          type: triplet
          name: Triplet
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: cosine_accuracy
            value: 0.9443684816360474
            name: Cosine Accuracy

SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L6-v2
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 384 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("LamaDiab/MiniLM-V26Data-256HardBATCH-SemanticEngine")
# Run inference
sentences = [
    'diary of a wimpy kid do-it-youself book',
    'children english book',
    'grand theft auto v (ps5)',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.5029, 0.2692],
#         [0.5029, 1.0000, 0.3907],
#         [0.2692, 0.3907, 1.0000]])

Evaluation

Metrics

Triplet

Metric Value
cosine_accuracy 0.9444

Training Details

Training Dataset

Unnamed Dataset

  • Size: 604,740 training samples
  • Columns: anchor, positive, and itemCategory
  • Approximate statistics based on the first 1000 samples:
    anchor positive itemCategory
    type string string string
    details
    • min: 3 tokens
    • mean: 9.9 tokens
    • max: 42 tokens
    • min: 3 tokens
    • mean: 4.76 tokens
    • max: 78 tokens
    • min: 3 tokens
    • mean: 3.94 tokens
    • max: 9 tokens
  • Samples:
    anchor positive itemCategory
    oval silver bracelet with side oat women bracelet bracelet
    petrol denim bandana hair accessory hair accessory
    lights & colors driver toy toddler toy
  • Loss: MultipleNegativesSymmetricRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim",
        "gather_across_devices": false
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 9,509 evaluation samples
  • Columns: anchor, positive, negative, and itemCategory
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative itemCategory
    type string string string string
    details
    • min: 3 tokens
    • mean: 9.63 tokens
    • max: 43 tokens
    • min: 2 tokens
    • mean: 6.39 tokens
    • max: 150 tokens
    • min: 3 tokens
    • mean: 9.42 tokens
    • max: 46 tokens
    • min: 3 tokens
    • mean: 3.88 tokens
    • max: 10 tokens
  • Samples:
    anchor positive negative itemCategory
    pilot mechanical pencil progrex h-127 - 0.7 mm office supplies artist pen extra fine brush tip b no.125 pencil
    superior drawing marker -pen - set of 12 colors - 2 nib marker pen urban stars prayer mat marker
    first person singular author: haruki murakami haruki murakami book colorful rings arrangement game literature and fiction
  • Loss: MultipleNegativesSymmetricRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim",
        "gather_across_devices": false
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 256
  • per_device_eval_batch_size: 256
  • learning_rate: 3e-05
  • weight_decay: 0.01
  • warmup_ratio: 0.1
  • fp16: True
  • dataloader_num_workers: 1
  • dataloader_prefetch_factor: 2
  • dataloader_persistent_workers: True
  • push_to_hub: True
  • hub_model_id: LamaDiab/MiniLM-V26Data-256HardBATCH-SemanticEngine
  • hub_strategy: all_checkpoints

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 256
  • per_device_eval_batch_size: 256
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 3e-05
  • weight_decay: 0.01
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 1
  • dataloader_prefetch_factor: 2
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: True
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: True
  • resume_from_checkpoint: None
  • hub_model_id: LamaDiab/MiniLM-V26Data-256HardBATCH-SemanticEngine
  • hub_strategy: all_checkpoints
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss Validation Loss cosine_accuracy
0.0004 1 4.1437 - -
0.4232 1000 3.6457 0.9829 0.9363
0.8464 2000 2.6898 0.9383 0.9378
1.2693 3000 2.4448 0.9807 0.9374
1.6922 4000 2.6158 0.9553 0.9423
2.1150 5000 2.5157 0.9650 0.9416
2.5378 6000 2.3962 0.9475 0.9438
2.9607 7000 2.4768 0.9481 0.9444

Framework Versions

  • Python: 3.11.13
  • Sentence Transformers: 5.1.2
  • Transformers: 4.53.3
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.9.0
  • Datasets: 4.4.1
  • Tokenizers: 0.21.2

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}