marianmt-zh_cn-th / README.md
Lalita's picture
Update README.md
3c44060
|
raw
history blame
1.47 kB
---
tags:
- translation
- torch==1.8.0
widget:
- text: "Inference Unavailable"
---
### marianmt-zh_cn-th
* source languages: zh_cn
* target languages: th
* dataset:
* model: transformer-align
* pre-processing: normalization + SentencePiece
* test set scores: syllable: 15.95, word: 8.43
## Training
Training scripts from [LalitaDeelert/NLP-ZH_TH-Project](https://github.com/LalitaDeelert/NLP-ZH_TH-Project). Experiments tracked at [cstorm125/marianmt-zh_cn-th](https://wandb.ai/cstorm125/marianmt-zh_cn-th).
```
export WANDB_PROJECT=marianmt-zh_cn-th
python train_model.py --input_fname ../data/v1/Train.csv \\\\\\\\\\\\\\\\
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\t--output_dir ../models/marianmt-zh_cn-th \\\\\\\\\\\\\\\\
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\t--source_lang zh --target_lang th \\\\\\\\\\\\\\\\
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\t--metric_tokenize th_syllable --fp16
```
## Usage
```
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("Lalita/marianmt-zh_cn-th")
model = AutoModelForSeq2SeqLM.from_pretrained("Lalita/marianmt-zh_cn-th").cpu()
src_text = [
'我爱你',
'我想吃米饭',
]
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
print([tokenizer.decode(t, skip_special_tokens=True) for t in translated])
> ['ผมรักคุณนะ', 'ฉันอยากกินข้าว']
```
## Requirements
```
transformers==4.6.0
torch==1.8.0
```