dangvantuan commited on
Commit
649f575
1 Parent(s): c2ed2a2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -3
README.md CHANGED
@@ -37,7 +37,7 @@ SentenceTransformer(
37
  - Dataset: [STSB-fr and en]
38
  - Method: Fine-tuning specifically for the semantic textual similarity benchmark using Siamese BERT-Networks configured with the 'sentence-transformers' library.
39
  ### Stage 4: Advanced Augmentation Fine-tuning
40
- - Dataset: STSB-vn with generate [silver sample from gold sample](https://www.sbert.net/examples/training/data_augmentation/README.html)
41
  - Method: Employed an advanced strategy using [Augmented SBERT](https://arxiv.org/abs/2010.08240) with Pair Sampling Strategies, integrating both Cross-Encoder and Bi-Encoder models. This stage further refined the embeddings by enriching the training data dynamically, enhancing the model's robustness and accuracy.
42
 
43
 
@@ -53,11 +53,10 @@ Then you can use the model like this:
53
 
54
  ```python
55
  from sentence_transformers import SentenceTransformer
56
- from pyvi.ViTokenizer import tokenize
57
 
58
  sentences = ["Paris est une capitale de la France", "Paris is a capital of France"]
59
 
60
- model = SentenceTransformer('Lajavaness/bilingual-embedding-large', trust_remote_code=True)
61
  print(embeddings)
62
 
63
  ```
 
37
  - Dataset: [STSB-fr and en]
38
  - Method: Fine-tuning specifically for the semantic textual similarity benchmark using Siamese BERT-Networks configured with the 'sentence-transformers' library.
39
  ### Stage 4: Advanced Augmentation Fine-tuning
40
+ - Dataset: STSB with generate [silver sample from gold sample](https://www.sbert.net/examples/training/data_augmentation/README.html)
41
  - Method: Employed an advanced strategy using [Augmented SBERT](https://arxiv.org/abs/2010.08240) with Pair Sampling Strategies, integrating both Cross-Encoder and Bi-Encoder models. This stage further refined the embeddings by enriching the training data dynamically, enhancing the model's robustness and accuracy.
42
 
43
 
 
53
 
54
  ```python
55
  from sentence_transformers import SentenceTransformer
 
56
 
57
  sentences = ["Paris est une capitale de la France", "Paris is a capital of France"]
58
 
59
+ model = SentenceTransformer('Lajavaness/bilingual-embedding-large-8k', trust_remote_code=True)
60
  print(embeddings)
61
 
62
  ```