metadata
language: en
license: mit
tags:
- audio
- captioning
- text
- audio-captioning
- automated-audio-captioning
task_categories:
- audio-captioning
CoNeTTE (ConvNext-Transformer with Task Embedding) for Automated Audio Captioning
This model generate a short textual description of any audio file.
Installation
pip install conette
Usage
from conette import CoNeTTEConfig, CoNeTTEModel
config = CoNeTTEConfig.from_pretrained("Labbeti/conette")
model = CoNeTTEModel.from_pretrained("Labbeti/conette", config=config)
path = "/my/path/to/audio.wav"
outputs = model(path)
cands = outputs["cands"][0]
print(cands)
Performance
TODO
Additional information
The encoder part of the architecture is based on a ConvNeXt model for audio classification, available here: https://huggingface.co/topel/ConvNeXt-Tiny-AT. The encoder weights used are named "convnext_tiny_465mAP_BL_AC_70kit.pth", available on Zenodo: https://zenodo.org/record/8020843.
It was created by @Labbeti.