Delete modeling_sybil.py
Browse files- modeling_sybil.py +0 -385
modeling_sybil.py
DELETED
|
@@ -1,385 +0,0 @@
|
|
| 1 |
-
"""PyTorch Sybil model for lung cancer risk prediction"""
|
| 2 |
-
|
| 3 |
-
import torch
|
| 4 |
-
import torch.nn as nn
|
| 5 |
-
import torchvision
|
| 6 |
-
from transformers import PreTrainedModel
|
| 7 |
-
from transformers.modeling_outputs import BaseModelOutput
|
| 8 |
-
from typing import Optional, Dict, List, Tuple
|
| 9 |
-
import numpy as np
|
| 10 |
-
from dataclasses import dataclass
|
| 11 |
-
|
| 12 |
-
try:
|
| 13 |
-
from .configuration_sybil import SybilConfig
|
| 14 |
-
except ImportError:
|
| 15 |
-
from configuration_sybil import SybilConfig
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
@dataclass
|
| 19 |
-
class SybilOutput(BaseModelOutput):
|
| 20 |
-
"""
|
| 21 |
-
Base class for Sybil model outputs.
|
| 22 |
-
|
| 23 |
-
Args:
|
| 24 |
-
risk_scores: (`torch.FloatTensor` of shape `(batch_size, max_followup)`):
|
| 25 |
-
Predicted risk scores for each year up to max_followup.
|
| 26 |
-
image_attention: (`torch.FloatTensor` of shape `(batch_size, num_slices, height, width)`, *optional*):
|
| 27 |
-
Attention weights over image pixels.
|
| 28 |
-
volume_attention: (`torch.FloatTensor` of shape `(batch_size, num_slices)`, *optional*):
|
| 29 |
-
Attention weights over CT scan slices.
|
| 30 |
-
hidden_states: (`torch.FloatTensor` of shape `(batch_size, hidden_dim)`, *optional*):
|
| 31 |
-
Hidden states from the pooling layer.
|
| 32 |
-
"""
|
| 33 |
-
risk_scores: torch.FloatTensor = None
|
| 34 |
-
image_attention: Optional[torch.FloatTensor] = None
|
| 35 |
-
volume_attention: Optional[torch.FloatTensor] = None
|
| 36 |
-
hidden_states: Optional[torch.FloatTensor] = None
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
class CumulativeProbabilityLayer(nn.Module):
|
| 40 |
-
"""Cumulative probability layer for survival prediction"""
|
| 41 |
-
|
| 42 |
-
def __init__(self, hidden_dim: int, max_followup: int = 6):
|
| 43 |
-
super().__init__()
|
| 44 |
-
self.max_followup = max_followup
|
| 45 |
-
self.fc = nn.Linear(hidden_dim, max_followup)
|
| 46 |
-
|
| 47 |
-
def forward(self, x):
|
| 48 |
-
logits = self.fc(x)
|
| 49 |
-
# Apply cumulative sum for monotonic risk scores
|
| 50 |
-
cumsum = torch.cumsum(torch.sigmoid(logits), dim=-1)
|
| 51 |
-
# Normalize to [0, 1] range
|
| 52 |
-
return cumsum / self.max_followup
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
class MultiAttentionPool(nn.Module):
|
| 56 |
-
"""Multi-attention pooling layer for CT scan aggregation"""
|
| 57 |
-
|
| 58 |
-
def __init__(self, channels: int = 512):
|
| 59 |
-
super().__init__()
|
| 60 |
-
self.channels = channels
|
| 61 |
-
|
| 62 |
-
# Volume-level attention (across slices)
|
| 63 |
-
self.volume_attention = nn.Sequential(
|
| 64 |
-
nn.Conv3d(channels, 128, kernel_size=1),
|
| 65 |
-
nn.ReLU(),
|
| 66 |
-
nn.Conv3d(128, 1, kernel_size=1)
|
| 67 |
-
)
|
| 68 |
-
|
| 69 |
-
# Image-level attention (within slices)
|
| 70 |
-
self.image_attention = nn.Sequential(
|
| 71 |
-
nn.Conv3d(channels, 128, kernel_size=1),
|
| 72 |
-
nn.ReLU(),
|
| 73 |
-
nn.Conv3d(128, 1, kernel_size=1)
|
| 74 |
-
)
|
| 75 |
-
|
| 76 |
-
def forward(self, x):
|
| 77 |
-
batch_size = x.shape[0]
|
| 78 |
-
|
| 79 |
-
# Compute attention weights
|
| 80 |
-
volume_att = self.volume_attention(x) # [B, 1, D, H, W]
|
| 81 |
-
image_att = self.image_attention(x) # [B, 1, D, H, W]
|
| 82 |
-
|
| 83 |
-
# Apply softmax for normalization
|
| 84 |
-
volume_att_flat = volume_att.view(batch_size, -1)
|
| 85 |
-
volume_att_weights = torch.softmax(volume_att_flat, dim=-1)
|
| 86 |
-
volume_att_weights = volume_att_weights.view_as(volume_att)
|
| 87 |
-
|
| 88 |
-
image_att_2d = image_att.squeeze(1) # [B, D, H, W]
|
| 89 |
-
for i in range(image_att_2d.shape[1]): # For each slice
|
| 90 |
-
slice_att = image_att_2d[:, i, :, :].contiguous()
|
| 91 |
-
slice_att_flat = slice_att.view(batch_size, -1)
|
| 92 |
-
slice_att_weights = torch.softmax(slice_att_flat, dim=-1)
|
| 93 |
-
image_att_2d[:, i, :, :] = slice_att_weights.view_as(slice_att)
|
| 94 |
-
image_att = image_att_2d.unsqueeze(1)
|
| 95 |
-
|
| 96 |
-
# Apply attention and pool
|
| 97 |
-
attended = x * volume_att_weights * image_att
|
| 98 |
-
hidden = attended.mean(dim=[2, 3, 4]) # Global average pooling
|
| 99 |
-
|
| 100 |
-
return {
|
| 101 |
-
'hidden': hidden,
|
| 102 |
-
'volume_attention_1': volume_att_weights.squeeze(1),
|
| 103 |
-
'image_attention_1': image_att.squeeze(1)
|
| 104 |
-
}
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
class SybilPreTrainedModel(PreTrainedModel):
|
| 108 |
-
"""
|
| 109 |
-
An abstract class to handle weights initialization and a simple interface
|
| 110 |
-
for downloading and loading pretrained models.
|
| 111 |
-
"""
|
| 112 |
-
config_class = SybilConfig
|
| 113 |
-
base_model_prefix = "sybil"
|
| 114 |
-
supports_gradient_checkpointing = False
|
| 115 |
-
|
| 116 |
-
def _init_weights(self, module):
|
| 117 |
-
"""Initialize the weights"""
|
| 118 |
-
if isinstance(module, nn.Linear):
|
| 119 |
-
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 120 |
-
if module.bias is not None:
|
| 121 |
-
module.bias.data.zero_()
|
| 122 |
-
elif isinstance(module, nn.Conv3d):
|
| 123 |
-
nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu')
|
| 124 |
-
if module.bias is not None:
|
| 125 |
-
module.bias.data.zero_()
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
class SybilForRiskPrediction(SybilPreTrainedModel):
|
| 129 |
-
"""
|
| 130 |
-
Sybil model for lung cancer risk prediction from CT scans.
|
| 131 |
-
|
| 132 |
-
This model takes 3D CT scan volumes as input and predicts cancer risk scores
|
| 133 |
-
for multiple future time points (typically 1-6 years).
|
| 134 |
-
"""
|
| 135 |
-
|
| 136 |
-
def __init__(self, config: SybilConfig):
|
| 137 |
-
super().__init__(config)
|
| 138 |
-
self.config = config
|
| 139 |
-
|
| 140 |
-
# Use pretrained R3D-18 as backbone
|
| 141 |
-
encoder = torchvision.models.video.r3d_18(pretrained=True)
|
| 142 |
-
self.image_encoder = nn.Sequential(*list(encoder.children())[:-2])
|
| 143 |
-
|
| 144 |
-
# Multi-attention pooling
|
| 145 |
-
self.pool = MultiAttentionPool(channels=512)
|
| 146 |
-
|
| 147 |
-
# Classification layers
|
| 148 |
-
self.relu = nn.ReLU(inplace=False)
|
| 149 |
-
self.dropout = nn.Dropout(p=config.dropout)
|
| 150 |
-
|
| 151 |
-
# Risk prediction layer
|
| 152 |
-
self.prob_of_failure_layer = CumulativeProbabilityLayer(
|
| 153 |
-
config.hidden_dim,
|
| 154 |
-
max_followup=config.max_followup
|
| 155 |
-
)
|
| 156 |
-
|
| 157 |
-
# Calibrator for ensemble predictions
|
| 158 |
-
self.calibrator = None
|
| 159 |
-
if config.calibrator_data:
|
| 160 |
-
self.set_calibrator(config.calibrator_data)
|
| 161 |
-
|
| 162 |
-
# Initialize weights
|
| 163 |
-
self.post_init()
|
| 164 |
-
|
| 165 |
-
def set_calibrator(self, calibrator_data: Dict):
|
| 166 |
-
"""Set calibration data for risk score adjustment"""
|
| 167 |
-
self.calibrator = calibrator_data
|
| 168 |
-
|
| 169 |
-
def _calibrate_scores(self, scores: torch.Tensor) -> torch.Tensor:
|
| 170 |
-
"""Apply calibration to raw risk scores"""
|
| 171 |
-
if self.calibrator is None:
|
| 172 |
-
return scores
|
| 173 |
-
|
| 174 |
-
# Convert to numpy for calibration
|
| 175 |
-
scores_np = scores.detach().cpu().numpy()
|
| 176 |
-
calibrated = np.zeros_like(scores_np)
|
| 177 |
-
|
| 178 |
-
# Apply calibration for each year
|
| 179 |
-
for year in range(scores_np.shape[1]):
|
| 180 |
-
year_key = f"Year{year + 1}"
|
| 181 |
-
if year_key in self.calibrator:
|
| 182 |
-
# Apply calibration transformation
|
| 183 |
-
calibrated[:, year] = self._apply_calibration(
|
| 184 |
-
scores_np[:, year],
|
| 185 |
-
self.calibrator[year_key]
|
| 186 |
-
)
|
| 187 |
-
else:
|
| 188 |
-
calibrated[:, year] = scores_np[:, year]
|
| 189 |
-
|
| 190 |
-
return torch.from_numpy(calibrated).to(scores.device)
|
| 191 |
-
|
| 192 |
-
def _apply_calibration(self, scores: np.ndarray, calibrator_params: Dict) -> np.ndarray:
|
| 193 |
-
"""Apply specific calibration transformation"""
|
| 194 |
-
# Simplified calibration - in practice, this would use the full calibration model
|
| 195 |
-
# from the original Sybil implementation
|
| 196 |
-
return scores # Placeholder for now
|
| 197 |
-
|
| 198 |
-
def forward(
|
| 199 |
-
self,
|
| 200 |
-
pixel_values: torch.FloatTensor,
|
| 201 |
-
return_attentions: bool = False,
|
| 202 |
-
return_dict: bool = True,
|
| 203 |
-
) -> SybilOutput:
|
| 204 |
-
"""
|
| 205 |
-
Forward pass of the Sybil model.
|
| 206 |
-
|
| 207 |
-
Args:
|
| 208 |
-
pixel_values: (`torch.FloatTensor` of shape `(batch_size, channels, depth, height, width)`):
|
| 209 |
-
Pixel values of CT scan volumes.
|
| 210 |
-
return_attentions: (`bool`, *optional*, defaults to `False`):
|
| 211 |
-
Whether to return attention weights.
|
| 212 |
-
return_dict: (`bool`, *optional*, defaults to `True`):
|
| 213 |
-
Whether to return a `SybilOutput` instead of a plain tuple.
|
| 214 |
-
|
| 215 |
-
Returns:
|
| 216 |
-
`SybilOutput` or tuple
|
| 217 |
-
"""
|
| 218 |
-
# Extract features using 3D CNN backbone
|
| 219 |
-
features = self.image_encoder(pixel_values)
|
| 220 |
-
|
| 221 |
-
# Apply multi-attention pooling
|
| 222 |
-
pool_output = self.pool(features)
|
| 223 |
-
|
| 224 |
-
# Apply ReLU and dropout
|
| 225 |
-
hidden = self.relu(pool_output['hidden'])
|
| 226 |
-
hidden = self.dropout(hidden)
|
| 227 |
-
|
| 228 |
-
# Predict risk scores
|
| 229 |
-
risk_logits = self.prob_of_failure_layer(hidden)
|
| 230 |
-
risk_scores = torch.sigmoid(risk_logits)
|
| 231 |
-
|
| 232 |
-
# Apply calibration if available
|
| 233 |
-
risk_scores = self._calibrate_scores(risk_scores)
|
| 234 |
-
|
| 235 |
-
if not return_dict:
|
| 236 |
-
outputs = (risk_scores,)
|
| 237 |
-
if return_attentions:
|
| 238 |
-
outputs = outputs + (pool_output.get('image_attention_1'),
|
| 239 |
-
pool_output.get('volume_attention_1'))
|
| 240 |
-
return outputs
|
| 241 |
-
|
| 242 |
-
return SybilOutput(
|
| 243 |
-
risk_scores=risk_scores,
|
| 244 |
-
image_attention=pool_output.get('image_attention_1') if return_attentions else None,
|
| 245 |
-
volume_attention=pool_output.get('volume_attention_1') if return_attentions else None,
|
| 246 |
-
hidden_states=hidden if return_attentions else None
|
| 247 |
-
)
|
| 248 |
-
|
| 249 |
-
@classmethod
|
| 250 |
-
def from_pretrained_ensemble(
|
| 251 |
-
cls,
|
| 252 |
-
pretrained_model_name_or_path,
|
| 253 |
-
checkpoint_paths: List[str],
|
| 254 |
-
calibrator_path: Optional[str] = None,
|
| 255 |
-
**kwargs
|
| 256 |
-
):
|
| 257 |
-
"""
|
| 258 |
-
Load an ensemble of Sybil models from checkpoints.
|
| 259 |
-
|
| 260 |
-
Args:
|
| 261 |
-
pretrained_model_name_or_path: Path to the pretrained model or model identifier.
|
| 262 |
-
checkpoint_paths: List of paths to individual model checkpoints.
|
| 263 |
-
calibrator_path: Path to calibration data.
|
| 264 |
-
**kwargs: Additional keyword arguments for model initialization.
|
| 265 |
-
|
| 266 |
-
Returns:
|
| 267 |
-
SybilEnsemble: An ensemble of Sybil models.
|
| 268 |
-
"""
|
| 269 |
-
config = kwargs.pop("config", None)
|
| 270 |
-
if config is None:
|
| 271 |
-
config = SybilConfig.from_pretrained(pretrained_model_name_or_path)
|
| 272 |
-
|
| 273 |
-
# Load calibrator if provided
|
| 274 |
-
calibrator_data = None
|
| 275 |
-
if calibrator_path:
|
| 276 |
-
import json
|
| 277 |
-
with open(calibrator_path, 'r') as f:
|
| 278 |
-
calibrator_data = json.load(f)
|
| 279 |
-
config.calibrator_data = calibrator_data
|
| 280 |
-
|
| 281 |
-
# Create ensemble
|
| 282 |
-
models = []
|
| 283 |
-
for checkpoint_path in checkpoint_paths:
|
| 284 |
-
model = cls(config)
|
| 285 |
-
# Load checkpoint weights
|
| 286 |
-
checkpoint = torch.load(checkpoint_path, map_location='cpu')
|
| 287 |
-
# Remove 'model.' prefix from state dict keys if present
|
| 288 |
-
state_dict = {}
|
| 289 |
-
for k, v in checkpoint['state_dict'].items():
|
| 290 |
-
if k.startswith('model.'):
|
| 291 |
-
state_dict[k[6:]] = v
|
| 292 |
-
else:
|
| 293 |
-
state_dict[k] = v
|
| 294 |
-
|
| 295 |
-
# Map to new model structure
|
| 296 |
-
mapped_state_dict = model._map_checkpoint_weights(state_dict)
|
| 297 |
-
model.load_state_dict(mapped_state_dict, strict=False)
|
| 298 |
-
models.append(model)
|
| 299 |
-
|
| 300 |
-
return SybilEnsemble(models, config)
|
| 301 |
-
|
| 302 |
-
def _map_checkpoint_weights(self, state_dict: Dict) -> Dict:
|
| 303 |
-
"""Map original Sybil checkpoint weights to new structure"""
|
| 304 |
-
mapped = {}
|
| 305 |
-
|
| 306 |
-
# Map encoder weights
|
| 307 |
-
for k, v in state_dict.items():
|
| 308 |
-
if k.startswith('image_encoder'):
|
| 309 |
-
mapped[k] = v
|
| 310 |
-
elif k.startswith('pool'):
|
| 311 |
-
# Map pooling layer weights
|
| 312 |
-
mapped[k] = v
|
| 313 |
-
elif k.startswith('prob_of_failure_layer'):
|
| 314 |
-
# Map final prediction layer
|
| 315 |
-
mapped[k] = v
|
| 316 |
-
|
| 317 |
-
return mapped
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
class SybilEnsemble:
|
| 321 |
-
"""Ensemble of Sybil models for improved predictions"""
|
| 322 |
-
|
| 323 |
-
def __init__(self, models: List[SybilForRiskPrediction], config: SybilConfig):
|
| 324 |
-
self.models = models
|
| 325 |
-
self.config = config
|
| 326 |
-
self.device = None
|
| 327 |
-
|
| 328 |
-
def to(self, device):
|
| 329 |
-
"""Move all models to device"""
|
| 330 |
-
self.device = device
|
| 331 |
-
for model in self.models:
|
| 332 |
-
model.to(device)
|
| 333 |
-
return self
|
| 334 |
-
|
| 335 |
-
def eval(self):
|
| 336 |
-
"""Set all models to evaluation mode"""
|
| 337 |
-
for model in self.models:
|
| 338 |
-
model.eval()
|
| 339 |
-
|
| 340 |
-
def __call__(
|
| 341 |
-
self,
|
| 342 |
-
pixel_values: torch.FloatTensor,
|
| 343 |
-
return_attentions: bool = False,
|
| 344 |
-
) -> SybilOutput:
|
| 345 |
-
"""
|
| 346 |
-
Run inference with ensemble voting.
|
| 347 |
-
|
| 348 |
-
Args:
|
| 349 |
-
pixel_values: Input CT scan volumes.
|
| 350 |
-
return_attentions: Whether to return attention maps.
|
| 351 |
-
|
| 352 |
-
Returns:
|
| 353 |
-
SybilOutput with averaged predictions from all models.
|
| 354 |
-
"""
|
| 355 |
-
all_risk_scores = []
|
| 356 |
-
all_image_attentions = []
|
| 357 |
-
all_volume_attentions = []
|
| 358 |
-
|
| 359 |
-
with torch.no_grad():
|
| 360 |
-
for model in self.models:
|
| 361 |
-
output = model(
|
| 362 |
-
pixel_values=pixel_values,
|
| 363 |
-
return_attentions=return_attentions
|
| 364 |
-
)
|
| 365 |
-
all_risk_scores.append(output.risk_scores)
|
| 366 |
-
|
| 367 |
-
if return_attentions:
|
| 368 |
-
all_image_attentions.append(output.image_attention)
|
| 369 |
-
all_volume_attentions.append(output.volume_attention)
|
| 370 |
-
|
| 371 |
-
# Average predictions
|
| 372 |
-
risk_scores = torch.stack(all_risk_scores).mean(dim=0)
|
| 373 |
-
|
| 374 |
-
# Average attentions if requested
|
| 375 |
-
image_attention = None
|
| 376 |
-
volume_attention = None
|
| 377 |
-
if return_attentions:
|
| 378 |
-
image_attention = torch.stack(all_image_attentions).mean(dim=0)
|
| 379 |
-
volume_attention = torch.stack(all_volume_attentions).mean(dim=0)
|
| 380 |
-
|
| 381 |
-
return SybilOutput(
|
| 382 |
-
risk_scores=risk_scores,
|
| 383 |
-
image_attention=image_attention,
|
| 384 |
-
volume_attention=volume_attention
|
| 385 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|