Aakash-Tripathi commited on
Commit
15f5ea3
Β·
verified Β·
1 Parent(s): cf14762

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -16
README.md CHANGED
@@ -44,30 +44,41 @@ pip install huggingface-hub torch torchvision pydicom
44
  ```python
45
  from huggingface_hub import snapshot_download
46
  import sys
 
47
 
48
  # Download model
49
  model_path = snapshot_download(repo_id="Lab-Rasool/sybil")
50
  sys.path.append(model_path)
51
 
52
  # Import model
53
- from modeling_sybil_wrapper import SybilHFWrapper
54
  from configuration_sybil import SybilConfig
55
 
56
  # Initialize
57
  config = SybilConfig()
58
  model = SybilHFWrapper(config)
59
 
60
- # Prepare your DICOM files (CT scan slices)
61
- dicom_paths = ["scan1.dcm", "scan2.dcm", ...] # Replace with actual paths
 
 
62
 
63
  # Get predictions
64
  output = model(dicom_paths=dicom_paths)
65
  risk_scores = output.risk_scores.numpy()
66
 
67
  # Display results
68
- print("Lung Cancer Risk Predictions:")
 
 
 
 
 
 
 
69
  for i, score in enumerate(risk_scores):
70
- print(f"Year {i+1}: {score*100:.1f}%")
 
71
  ```
72
 
73
  ## πŸ“Š Example with Demo Data
@@ -121,17 +132,7 @@ output = model(dicom_paths=dicom_files)
121
 
122
  # Show results
123
  for i, score in enumerate(output.risk_scores.numpy()):
124
- print(f"Year {i+1}: {score*100:.1f}% risk")
125
- ```
126
-
127
- Expected output for demo data:
128
- ```
129
- Year 1: 2.2% risk
130
- Year 2: 4.5% risk
131
- Year 3: 7.2% risk
132
- Year 4: 7.9% risk
133
- Year 5: 9.6% risk
134
- Year 6: 13.6% risk
135
  ```
136
 
137
  ## πŸ“ˆ Performance Metrics
 
44
  ```python
45
  from huggingface_hub import snapshot_download
46
  import sys
47
+ import os
48
 
49
  # Download model
50
  model_path = snapshot_download(repo_id="Lab-Rasool/sybil")
51
  sys.path.append(model_path)
52
 
53
  # Import model
54
+ from modeling_sybil_hf import SybilHFWrapper
55
  from configuration_sybil import SybilConfig
56
 
57
  # Initialize
58
  config = SybilConfig()
59
  model = SybilHFWrapper(config)
60
 
61
+ dicom_dir = "path/to/volume"
62
+ dicom_paths = [os.path.join(dicom_dir, f) for f in os.listdir(dicom_dir) if f.endswith('.dcm')]
63
+
64
+ print(f"Found {len(dicom_paths)} DICOM files for prediction.")
65
 
66
  # Get predictions
67
  output = model(dicom_paths=dicom_paths)
68
  risk_scores = output.risk_scores.numpy()
69
 
70
  # Display results
71
+ print("\nLung Cancer Risk Predictions:")
72
+ print(f"Risk scores shape: {risk_scores.shape}")
73
+
74
+ # Handle both single and batch predictions
75
+ if risk_scores.ndim == 2:
76
+ # Batch predictions - take first sample
77
+ risk_scores = risk_scores[0]
78
+
79
  for i, score in enumerate(risk_scores):
80
+ print(f"Year {i+1}: {float(score)}")
81
+
82
  ```
83
 
84
  ## πŸ“Š Example with Demo Data
 
132
 
133
  # Show results
134
  for i, score in enumerate(output.risk_scores.numpy()):
135
+ print(f"Year {i+1}: {float(score)}")
 
 
 
 
 
 
 
 
 
 
136
  ```
137
 
138
  ## πŸ“ˆ Performance Metrics