PEFT
Safetensors
German
trl
sft
Generated from Trainer
JanPf's picture
Update README.md
515d480 verified
---
library_name: peft
base_model: LSX-UniWue/LLaMmlein_1B
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: LLaMmlein_1b_chat_all
results: []
datasets:
- LSX-UniWue/Guanako
- FreedomIntelligence/sharegpt-deutsch
- FreedomIntelligence/alpaca-gpt4-deutsch
language:
- de
license: other
---
# LLäMmlein 1B Chat
This is a chat adapter for the German Tinyllama 1B language model.
Find more details on our [page](https://www.informatik.uni-wuerzburg.de/datascience/projects/nlp/llammlein/) and our [preprint](arxiv.org/abs/2411.11171)!
## Run it
```py
import torch
from peft import PeftConfig, PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer
torch.manual_seed(42)
# script config
base_model_name = "LSX-UniWue/LLaMmlein_1B"
chat_adapter_name = "LSX-UniWue/LLaMmlein_1B_chat_selected"
device = "mps" # or cuda
# chat history
messages = [
{
"role": "user",
"content": """Na wie geht's?""",
},
]
# load model
config = PeftConfig.from_pretrained(chat_adapter_name)
base_model = model = AutoModelForCausalLM.from_pretrained(
base_model_name,
attn_implementation="flash_attention_2" if device == "cuda" else None,
torch_dtype=torch.bfloat16,
device_map=device,
)
base_model.resize_token_embeddings(32064)
model = PeftModel.from_pretrained(base_model, chat_adapter_name)
tokenizer = AutoTokenizer.from_pretrained(chat_adapter_name)
# encode message in "ChatML" format
chat = tokenizer.apply_chat_template(
messages,
return_tensors="pt",
add_generation_prompt=True,
).to(device)
# generate response
print(
tokenizer.decode(
model.generate(
chat,
max_new_tokens=300,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
)[0],
skip_special_tokens=False,
)
)
```