|
# CodeLlama-70B_for_NMT |
|
|
|
We fine-tuned [CodeLlama-70B](https://huggingface.co/codellama/CodeLlama-70b-hf) on [Transfer_dataset](https://drive.google.com/drive/folders/1Z-2xcLSmh643BfX_j0yQW2GmdPoru6j3?usp=drive_link) under the NMT workflow for APR research. |
|
|
|
## Model Use |
|
|
|
To use this model, please make sure to install transformers, peft, bitsandbytes, and accelerate. |
|
|
|
```bash |
|
pip install transformers |
|
pip install peft |
|
pip install bitsandbytes |
|
pip install accelerate |
|
``` |
|
|
|
Then, please run the following script to merge the adapter into the CodeLlama. |
|
|
|
```bash |
|
bash merge.sh |
|
``` |
|
|
|
Finally, you can load the model to generate patches for buggy code. |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig |
|
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training |
|
import torch |
|
|
|
|
|
# load model and tokenizer |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("CodeLlama-70B_for_NMT/Epoch_1/-merged", use_auth_token=True) |
|
|
|
nf4_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_compute_dtype=torch.bfloat16 |
|
) |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
"CodeLlama-70B_for_NMT/Epoch_1/-merged", |
|
quantization_config=nf4_config, |
|
device_map='auto' |
|
) |
|
|
|
model = prepare_model_for_kbit_training(model) |
|
|
|
lora_config = LoraConfig( |
|
r=16, |
|
lora_alpha=32, |
|
lora_dropout=0.05, |
|
bias="none", |
|
task_type="CAUSAL_LM", |
|
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj"] |
|
) |
|
|
|
model = get_peft_model(model, lora_config) |
|
|
|
|
|
# a bug-fix pairs |
|
|
|
buggy_code = " |
|
/* |
|
* Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers |
|
Example |
|
is_equal_to_sum_even(4) == False |
|
is_equal_to_sum_even(6) == False |
|
is_equal_to_sum_even(8) == True |
|
*/ |
|
public class IS_EQUAL_TO_SUM_EVEN { |
|
public static boolean is_equal_to_sum_even(int n) { |
|
// bug_start |
|
return ((n * 2 == 1) ^ (n < 8)); |
|
// bug_end |
|
} |
|
} |
|
" |
|
|
|
fixed_code = " |
|
// fix_start |
|
return ((n % 2 == 0) && (n >= 8)); |
|
// fix_end |
|
" |
|
|
|
# model inference |
|
|
|
B_INST, E_INST = "[INST]", "[/INST]" |
|
input_text = tokenizer.bos_token + B_INST +'\n[bug_function]\n' + buggy_code + '\n[fix_code]\n' + E_INST |
|
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(0) |
|
|
|
eos_id = tokenizer.convert_tokens_to_ids(tokenizer.eos_token) |
|
generated_ids = model.generate( |
|
input_ids=input_ids, |
|
max_new_tokens=256, |
|
num_beams=10, |
|
num_return_sequences=10, |
|
early_stopping=True, |
|
pad_token_id=eos_id, |
|
eos_token_id=eos_id |
|
) |
|
|
|
for generated_id in generated_ids: |
|
generated_text = tokenizer.decode(generated_id, skip_special_tokens=False) |
|
patch = generated_text.split(E_INST)[1] |
|
patch = patch.replace(tokenizer.eos_token,'') |
|
print(patch) |
|
|
|
|
|
``` |
|
|
|
## Model Details |
|
*Note: Use of this model is governed by the Meta license. Meta developed and publicly released the Code Llama family of large language models (LLMs). |
|
|