yukiontheiceberg commited on
Commit
2eb5497
1 Parent(s): f23e579

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -24
README.md CHANGED
@@ -76,29 +76,14 @@ python3 -m fastchat.serve.cli --model-path LLM360/AmberSafe
76
  ## DataMix
77
  | Subset | Number of rows | License |
78
  | ----------- | ----------- | ----------- |
79
- | PKU-Alignment/PKU-SafeRLHF | 30k | cc-by-nc-4.0 |
80
- | Total | 30k | |
81
-
82
- ## Hyperparameters
83
- | Hyperparameter | Value |
84
- | ----------- | ----------- |
85
- | Total Parameters | 6.7B |
86
- | Hidden Size | 4096 |
87
- | Intermediate Size (MLPs) | 11008 |
88
- | Number of Attention Heads | 32 |
89
- | Number of Hidden Lyaers | 32 |
90
- | RMSNorm ɛ | 1e^-6 |
91
- | Max Seq Length | 2048 |
92
- | Vocab Size | 32000 |
93
-
94
- | Training Hyperparameter | Value |
95
- | ----------- | ----------- |
96
- | learning_rate | 2e-5 |
97
- | num_train_epochs | 3 |
98
- | per_device_train_batch_size | 2 |
99
- | gradient_accumulation_steps | 16 |
100
- | warmup_ratio | 0.04 |
101
- | model_max_length | 2048 |
102
 
103
 
104
  # Evaluation
@@ -107,7 +92,7 @@ python3 -m fastchat.serve.cli --model-path LLM360/AmberSafe
107
  |------------------------------------------------------|------------------------------------------------------------|
108
  | LLM360/Amber 359 | 2.48750 |
109
  | LLM360/AmberChat | 5.428125 |
110
- | **LLM360/AmberSafe** | **0.00000** |
111
 
112
  # Citation
113
 
 
76
  ## DataMix
77
  | Subset | Number of rows | License |
78
  | ----------- | ----------- | ----------- |
79
+ | [PKU-Alignment/PKU-SafeRLHF](https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF) | 330k | cc-by-nc-4.0 |
80
+ | Total | 330k | |
81
+
82
+ ## Method
83
+ We followed the instructions in the [dpo repo](https://github.com/eric-mitchell/direct-preference-optimization) to finetune this model.
84
+
85
+ 1. Run supervised fine-tuning (SFT) on the dataset(s) of interest.
86
+ 2. Run preference learning on the model from step 1, using preference data (ideally from the same distribution as the SFT examples).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87
 
88
 
89
  # Evaluation
 
92
  |------------------------------------------------------|------------------------------------------------------------|
93
  | LLM360/Amber 359 | 2.48750 |
94
  | LLM360/AmberChat | 5.428125 |
95
+ | **LLM360/AmberSafe** | **4.971264** |
96
 
97
  # Citation
98