victormiller
commited on
Commit
β’
3ebebc5
1
Parent(s):
16cd80e
Update README.md
Browse files
README.md
CHANGED
@@ -15,32 +15,29 @@ tags:
|
|
15 |
We present Amber, the first model in the LLM360 family. Amber is an
|
16 |
7B English language model with the LLaMA architecture.
|
17 |
|
18 |
-
##
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
committed to continually pushing the boundaries of LLMs through this open-source
|
27 |
-
effort.
|
28 |
-
|
29 |
-
Get access now at [LLM360 site](https://www.llm360.ai/)
|
30 |
|
31 |
-
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
|
|
|
42 |
|
43 |
-
|
44 |
|
45 |
To load a specific checkpoint, simply pass a revision with a value between `"ckpt_000"` and `"ckpt_358"`. If no revision is provided, it will load `"ckpt_359"`, which is the final checkpoint.
|
46 |
|
@@ -60,7 +57,7 @@ print(tokenizer.decode(outputs[0]))
|
|
60 |
|
61 |
# π Amber Training Details
|
62 |
|
63 |
-
##
|
64 |
| Subset | Tokens (Billion) |
|
65 |
| ----------- | ----------- |
|
66 |
| Arxiv | 30.00 |
|
@@ -72,17 +69,6 @@ print(tokenizer.decode(outputs[0]))
|
|
72 |
| Wikipedia | 23.90 |
|
73 |
| Total | 1259.13 |
|
74 |
|
75 |
-
## Hyperparameters
|
76 |
-
| Hyperparameter | Value |
|
77 |
-
| ----------- | ----------- |
|
78 |
-
| Total Parameters | 6.7B |
|
79 |
-
| Hidden Size | 4096 |
|
80 |
-
| Intermediate Size (MLPs) | 11008 |
|
81 |
-
| Number of Attention Heads | 32 |
|
82 |
-
| Number of Hidden Lyaers | 32 |
|
83 |
-
| RMSNorm Ι | 1e^-6 |
|
84 |
-
| Max Seq Length | 2048 |
|
85 |
-
| Vocab Size | 32000 |
|
86 |
|
87 |
| Training Loss |
|
88 |
|------------------------------------------------------------|
|
@@ -101,6 +87,42 @@ Please refer to our [W&B project page](https://wandb.ai/llm360/CrystalCoder) for
|
|
101 |
|-----------------------------------------------------|-----------------------------------------------------------|
|
102 |
|<img src="amber-mmlu-curve.png" alt="mmlu" width="400"/> | <img src="amber-truthfulqa-curve.png" alt="truthfulqa" width="400"/> |
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
# π Citation
|
105 |
|
106 |
**BibTeX:**
|
|
|
15 |
We present Amber, the first model in the LLM360 family. Amber is an
|
16 |
7B English language model with the LLaMA architecture.
|
17 |
|
18 |
+
## Evaluations
|
19 |
+
| Metric | Score |
|
20 |
+
| ----------- | ----------- |
|
21 |
+
| ARC-C | 42.57 |
|
22 |
+
| HellaSwag | 73.91 |
|
23 |
+
| MMLU | 28.53 |
|
24 |
+
| TruthfulQA | 43.67 |
|
25 |
+
| WinoGrande | 64.35 |
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
Amber is not a SOTA model. Amber is released to make LLM training knowledge accessible to all.
|
28 |
|
29 |
+
## Last 10 Checkpoints
|
30 |
+
| Checkpoints | |
|
31 |
+
| ----------- | ----------- |
|
32 |
+
| [Checkpoint 358](https://huggingface.co/LLM360/Amber/tree/ckpt_358) | [Checkpoint 353](https://huggingface.co/LLM360/Amber/tree/ckpt_353) |
|
33 |
+
| [Checkpoint 357](https://huggingface.co/LLM360/Amber/tree/ckpt_357) | [Checkpoint 352](https://huggingface.co/LLM360/Amber/tree/ckpt_352) |
|
34 |
+
| [Checkpoint 356](https://huggingface.co/LLM360/Amber/tree/ckpt_356) | [Checkpoint 351](https://huggingface.co/LLM360/Amber/tree/ckpt_351) |
|
35 |
+
| [Checkpoint 355](https://huggingface.co/LLM360/Amber/tree/ckpt_355) | [Checkpoint 350](https://huggingface.co/LLM360/Amber/tree/ckpt_350) |
|
36 |
+
| [Checkpoint 354](https://huggingface.co/LLM360/Amber/tree/ckpt_354) | [Checkpoint 349](https://huggingface.co/LLM360/Amber/tree/ckpt_349) |
|
37 |
|
38 |
+
To downloading other checkpoints, change the branch from 'main' to the checkpoint you want (e.g. 'ckpt_000'). This is completed on the 'Files and versions' tab (to the right of the Model Card).
|
39 |
|
40 |
+
## π Loading Amber
|
41 |
|
42 |
To load a specific checkpoint, simply pass a revision with a value between `"ckpt_000"` and `"ckpt_358"`. If no revision is provided, it will load `"ckpt_359"`, which is the final checkpoint.
|
43 |
|
|
|
57 |
|
58 |
# π Amber Training Details
|
59 |
|
60 |
+
## Datasets and Mix
|
61 |
| Subset | Tokens (Billion) |
|
62 |
| ----------- | ----------- |
|
63 |
| Arxiv | 30.00 |
|
|
|
69 |
| Wikipedia | 23.90 |
|
70 |
| Total | 1259.13 |
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
| Training Loss |
|
74 |
|------------------------------------------------------------|
|
|
|
87 |
|-----------------------------------------------------|-----------------------------------------------------------|
|
88 |
|<img src="amber-mmlu-curve.png" alt="mmlu" width="400"/> | <img src="amber-truthfulqa-curve.png" alt="truthfulqa" width="400"/> |
|
89 |
|
90 |
+
Get access now at [LLM360 site](https://www.llm360.ai/)
|
91 |
+
|
92 |
+
## π Model Description
|
93 |
+
|
94 |
+
- **Model type:** Language model with the same architecture as LLaMA-7B
|
95 |
+
- **Language(s) (NLP):** English
|
96 |
+
- **License:** Apache 2.0
|
97 |
+
- **Resources for more information:**
|
98 |
+
- [Training Code](https://github.com/LLM360/amber-train)
|
99 |
+
- [Data Preparation](https://github.com/LLM360/amber-data-prep)
|
100 |
+
- [Metrics](https://github.com/LLM360/Analysis360)
|
101 |
+
- [Fully processed Amber pretraining data](https://huggingface.co/datasets/LLM360/AmberDatasets)
|
102 |
+
|
103 |
+
## Hyperparameters
|
104 |
+
| Hyperparameter | Value |
|
105 |
+
| ----------- | ----------- |
|
106 |
+
| Total Parameters | 6.7B |
|
107 |
+
| Hidden Size | 4096 |
|
108 |
+
| Intermediate Size (MLPs) | 11008 |
|
109 |
+
| Number of Attention Heads | 32 |
|
110 |
+
| Number of Hidden Lyaers | 32 |
|
111 |
+
| RMSNorm Ι | 1e^-6 |
|
112 |
+
| Max Seq Length | 2048 |
|
113 |
+
| Vocab Size | 32000 |
|
114 |
+
|
115 |
+
## About LLM360
|
116 |
+
LLM360 is an initiative for comprehensive and fully open-sourced LLMs,
|
117 |
+
where all training details, model checkpoints, intermediate results, and
|
118 |
+
additional analyses are made available to the community. Our goal is to advance
|
119 |
+
the field by inviting the community to deepen the understanding of LLMs
|
120 |
+
together. As the first step of the project LLM360, we release all intermediate
|
121 |
+
model checkpoints, our fully-prepared pre-training dataset, all source code and
|
122 |
+
configurations, and training details. We are
|
123 |
+
committed to continually pushing the boundaries of LLMs through this open-source
|
124 |
+
effort.
|
125 |
+
|
126 |
# π Citation
|
127 |
|
128 |
**BibTeX:**
|