chess_test / tokenizer.py
Br0wks's picture
Chess Challenge submission by Br0wks
b83b66b verified
"""
Custom Chess Tokenizer for the Chess Challenge.
This tokenizer treats each move as a single token using the extended UCI notation
from the Lichess dataset (e.g., WPe2e4, BNg8f6).
The dataset format uses:
- W/B prefix for White/Black
- Piece letter: P=Pawn, N=Knight, B=Bishop, R=Rook, Q=Queen, K=King
- Source and destination squares (e.g., e2e4)
- Special suffixes: (x)=capture, (+)=check, (+*)=checkmate, (o)/(O)=castling
"""
from __future__ import annotations
import json
import os
from pathlib import Path
from typing import Dict, List, Optional
from transformers import PreTrainedTokenizer
"""
Custom Chess Tokenizer - Normalized Version
"""
import re
# Regex pour extraire case départ, arrivée et promotion
MOVE_RE = re.compile(r"([a-h][1-8])([a-h][1-8])")
PROMO_RE = re.compile(r"=([NBRQ])")
def normalize_move(tok: str) -> str:
"""Transforme 'WPe2e4(x)' en 'WPe2e4' pour réduire le vocabulaire."""
# 1. Garder les infos de base
m = MOVE_RE.search(tok)
if not m:
return tok # Fallback (sera probablement UNK)
fr, to = m.group(1), m.group(2)
# 2. Gérer la promotion
promo = ""
pm = PROMO_RE.search(tok)
if pm:
promo = "=" + pm.group(1)
# 3. Reconstruire le token standardisé
# On garde le préfixe WP/BN (chars 0 et 1) pour garder l'info couleur/pièce
# mais on supprime les suffixes (x), (+), etc.
prefix = tok[:2] if len(tok) >= 2 else "WP"
return f"{prefix}{fr}{to}{promo}"
class ChessTokenizer(PreTrainedTokenizer):
model_input_names = ["input_ids", "attention_mask"]
PAD_TOKEN = "[PAD]"
BOS_TOKEN = "[BOS]"
EOS_TOKEN = "[EOS]"
UNK_TOKEN = "[UNK]"
def __init__(self, vocab_file=None, vocab=None, **kwargs):
self._pad_token = self.PAD_TOKEN
self._bos_token = self.BOS_TOKEN
self._eos_token = self.EOS_TOKEN
self._unk_token = self.UNK_TOKEN
# Nettoyage kwargs
for t in ["pad_token", "bos_token", "eos_token", "unk_token"]:
kwargs.pop(t, None)
if vocab:
self._vocab = vocab
elif vocab_file:
with open(vocab_file, "r", encoding="utf-8") as f:
self._vocab = json.load(f)
else:
self._vocab = {t: i for i, t in enumerate([self.PAD_TOKEN, self.BOS_TOKEN, self.EOS_TOKEN, self.UNK_TOKEN])}
self._ids_to_tokens = {v: k for k, v in self._vocab.items()}
super().__init__(pad_token=self.PAD_TOKEN, bos_token=self.BOS_TOKEN, eos_token=self.EOS_TOKEN, unk_token=self.UNK_TOKEN, **kwargs)
@property
def vocab_size(self):
return len(self._vocab)
def get_vocab(self):
return dict(self._vocab)
def _tokenize(self, text):
# C'est ICI que la magie opère : on normalise à la volée
return [normalize_move(t) for t in text.strip().split()]
def _convert_token_to_id(self, token):
return self._vocab.get(token, self._vocab.get(self.UNK_TOKEN))
def _convert_id_to_token(self, index):
return self._ids_to_tokens.get(index, self.UNK_TOKEN)
def convert_tokens_to_string(self, tokens):
return " ".join(t for t in tokens if t not in [self.PAD_TOKEN, self.BOS_TOKEN, self.EOS_TOKEN, self.UNK_TOKEN])
def save_vocabulary(self, save_directory, filename_prefix=None):
if not os.path.exists(save_directory):
os.makedirs(save_directory)
path = os.path.join(save_directory, (filename_prefix + "-" if filename_prefix else "") + "vocab.json")
with open(path, "w") as f:
json.dump(self._vocab, f, indent=2)
return (path,)
@classmethod
def build_vocab_from_dataset(cls, dataset_name, min_frequency=2, max_vocab_size=1200, **kwargs):
"""Construit un vocabulaire compact et dense."""
from datasets import load_dataset
from collections import Counter
# On charge en streaming pour aller vite
ds = load_dataset(dataset_name, split="train", streaming=True)
ds = ds.take(50000) # 50k parties suffisent pour voir tous les coups possibles
counter = Counter()
for ex in ds:
# On normalise avant de compter !
moves = [normalize_move(t) for t in ex["text"].split()]
counter.update(moves)
# On garde les tokens spéciaux + les N plus fréquents
special = [cls.PAD_TOKEN, cls.BOS_TOKEN, cls.EOS_TOKEN, cls.UNK_TOKEN]
most_common = counter.most_common(max_vocab_size - len(special))
vocab = {t: i for i, t in enumerate(special + [t for t, c in most_common])}
return cls(vocab=vocab)