chess_done2 / tokenizer.py
Nestor02's picture
Chess Challenge submission by Nestor02
c16106e verified
"""
Decomposed Chess Tokenizer (v2) for the Chess Challenge.
This tokenizer factorizes each move into a small set of reusable tokens:
- One token for (color + piece): e.g. "WP", "BN"
- One token for the from-square with role suffix: e.g. "e2_f"
- One token for the to-square with role suffix: e.g. "e4_t"
- Optional promotion token: "q", "r", "b", "n"
It is compatible with the teacher evaluator's supported formats:
- Standard: "WPe2e4", "BNg8f6", with optional annotations "(x)", "(+)", "(o)/(O)", "(Q)"
- Decomposed: "WP e2_f e4_t"
- UCI: "e2e4", "e7e8q"
- UCI spaced: "e2 e4"
The tokenizer parses those inputs and emits the decomposed tokens above.
"""
from __future__ import annotations
import json
import os
import re
from pathlib import Path
from typing import Dict, List, Optional
from transformers import PreTrainedTokenizer
class ChessTokenizer(PreTrainedTokenizer):
model_input_names = ["input_ids", "attention_mask"]
vocab_files_names = {"vocab_file": "vocab.json"}
PAD_TOKEN = "[PAD]"
BOS_TOKEN = "[BOS]"
EOS_TOKEN = "[EOS]"
UNK_TOKEN = "[UNK]"
_COLOR_PIECE_RE = re.compile(r"^[WB][PNBRQK]$")
_SQUARE_RE = re.compile(r"[a-h][1-8]")
_SQUARE_ROLE_RE = re.compile(r"^([a-h][1-8])_([ft])$", re.IGNORECASE)
_PLAIN_SQUARE_RE = re.compile(r"^[a-h][1-8]$", re.IGNORECASE)
def __init__(
self,
vocab_file: Optional[str] = None,
vocab: Optional[Dict[str, int]] = None,
**kwargs,
):
self._pad_token = self.PAD_TOKEN
self._bos_token = self.BOS_TOKEN
self._eos_token = self.EOS_TOKEN
self._unk_token = self.UNK_TOKEN
# Remove any duplicate special-token entries passed through kwargs to avoid collisions.
kwargs.pop("pad_token", None)
kwargs.pop("bos_token", None)
kwargs.pop("eos_token", None)
kwargs.pop("unk_token", None)
if vocab is not None:
self._vocab = vocab
elif vocab_file is not None and os.path.exists(vocab_file):
with open(vocab_file, "r", encoding="utf-8") as f:
self._vocab = json.load(f)
else:
self._vocab = self._create_default_vocab()
self._ids_to_tokens = {v: k for k, v in self._vocab.items()}
super().__init__(
pad_token=self._pad_token,
bos_token=self._bos_token,
eos_token=self._eos_token,
unk_token=self._unk_token,
**kwargs,
)
@classmethod
def build_vocab_from_dataset(
cls,
*_,
**__,
) -> "ChessTokenizer2":
"""
Kept for API compatibility with `train.py`.
The v2 tokenizer uses a fixed vocabulary (colors/pieces/squares/promotions),
so dataset statistics are not required.
"""
return cls()
def _create_default_vocab(self) -> Dict[str, int]:
special_tokens = [self.PAD_TOKEN, self.BOS_TOKEN, self.EOS_TOKEN, self.UNK_TOKEN]
color_pieces = [
f"{color}{piece}"
for color in ("W", "B")
for piece in ("P", "N", "B", "R", "Q", "K")
]
squares = [f"{file}{rank}" for rank in range(1, 9) for file in "abcdefgh"]
square_from = [f"{sq}_f" for sq in squares]
square_to = [f"{sq}_t" for sq in squares]
promotions = ["q", "r", "b", "n"]
# Deterministic order for reproducibility.
all_tokens = special_tokens + color_pieces + square_from + square_to + promotions
return {tok: idx for idx, tok in enumerate(all_tokens)}
@property
def vocab_size(self) -> int:
return len(self._vocab)
def get_vocab(self) -> Dict[str, int]:
return dict(self._vocab)
def _tokenize(self, text: str) -> List[str]:
parts = text.strip().split()
if not parts:
return []
out: List[str] = []
next_role = "f" # Used only when squares arrive without _f/_t.
for part in parts:
if part in {self.PAD_TOKEN, self.BOS_TOKEN, self.EOS_TOKEN, self.UNK_TOKEN}:
out.append(part)
next_role = "f"
continue
# Decomposed color+piece token: "WP", "BN", ...
if self._COLOR_PIECE_RE.match(part.upper()):
out.append(part.upper())
next_role = "f"
continue
# Square with role suffix: "e2_f" / "e4_t"
m_role = self._SQUARE_ROLE_RE.match(part)
if m_role:
sq = m_role.group(1).lower()
role = m_role.group(2).lower()
out.append(f"{sq}_{role}")
next_role = "t" if role == "f" else "f"
continue
# Plain square: "e2" (assign role by position)
if self._PLAIN_SQUARE_RE.match(part):
sq = part.lower()
out.append(f"{sq}_{next_role}")
next_role = "t" if next_role == "f" else "f"
continue
# Promotion token as its own chunk: "q", "=Q", "(Q)" etc.
promo = self._extract_promotion(part)
if promo and self._looks_like_promo_only(part):
out.append(promo)
continue
# Standard / UCI move chunk: "WPe2e4(x+)", "e2e4", "e7e8=Q", ...
move_tokens = self._tokenize_move_chunk(part)
if move_tokens:
out.extend(move_tokens)
next_role = "f"
continue
# Skip pure annotation chunks if they appear separated (rare).
if re.fullmatch(r"[\(\)\+\*xoO=]+", part):
continue
out.append(self.UNK_TOKEN)
return out
def _looks_like_promo_only(self, part: str) -> bool:
part_stripped = part.strip()
if re.fullmatch(r"[qrbnQRBN]", part_stripped):
return True
if re.fullmatch(r"=[qrbnQRBN]", part_stripped):
return True
if re.fullmatch(r"\([qrbnQRBN]\)", part_stripped):
return True
return False
def _extract_promotion(self, text: str) -> Optional[str]:
text_lower = text.lower()
m = re.search(r"\(([qrbn])\)", text_lower)
if m:
return m.group(1)
m = re.search(r"=([qrbn])", text_lower)
if m:
return m.group(1)
return None
def _tokenize_move_chunk(self, chunk: str) -> List[str]:
chunk_stripped = chunk.strip()
if not chunk_stripped:
return []
chunk_lower = chunk_stripped.lower()
squares = re.findall(self._SQUARE_RE, chunk_lower)
if len(squares) < 2:
return []
from_sq, to_sq = squares[0], squares[1]
color_piece = None
if len(chunk_stripped) >= 2 and self._COLOR_PIECE_RE.match(chunk_stripped[:2].upper()):
color_piece = chunk_stripped[:2].upper()
tokens: List[str] = []
if color_piece:
tokens.append(color_piece)
tokens.append(f"{from_sq}_f")
tokens.append(f"{to_sq}_t")
# Promotion: look right after the destination square.
after_to = chunk_lower.find(to_sq)
if after_to != -1:
remaining = chunk_lower[after_to + 2 : after_to + 6]
m = re.search(r"[=]?([qrbn])", remaining)
if m:
tokens.append(m.group(1))
# Also support dataset-style "(Q)" promotions.
promo = self._extract_promotion(chunk_stripped)
if promo and promo not in tokens:
tokens.append(promo)
return tokens
def _convert_token_to_id(self, token: str) -> int:
return self._vocab.get(token, self._vocab.get(self.UNK_TOKEN, 0))
def _convert_id_to_token(self, index: int) -> str:
return self._ids_to_tokens.get(index, self.UNK_TOKEN)
def convert_tokens_to_string(self, tokens: List[str]) -> str:
special = {self.PAD_TOKEN, self.BOS_TOKEN, self.EOS_TOKEN, self.UNK_TOKEN}
return " ".join(t for t in tokens if t not in special)
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> tuple:
if not os.path.isdir(save_directory):
os.makedirs(save_directory, exist_ok=True)
vocab_file = os.path.join(
save_directory,
(filename_prefix + "-" if filename_prefix else "") + "vocab.json",
)
with open(vocab_file, "w", encoding="utf-8") as f:
json.dump(self._vocab, f, ensure_ascii=False, indent=2)
return (vocab_file,)