chess-Sunxt25 / model.py
Sunxt25's picture
Upload 4 files
519a223 verified
"""
Chess Transformer Model for the Chess Challenge.
This module provides a simple GPT-style transformer architecture
designed to fit within the 1M parameter constraint.
Key components:
- ChessConfig: Configuration class for model hyperparameters
- ChessForCausalLM: The main model class for next-move prediction
"""
from __future__ import annotations
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import PretrainedConfig, PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast
class ChessConfig(PretrainedConfig):
"""
Configuration class for the Chess Transformer model.
This configuration is designed for a ~1M parameter model.
Students can adjust these values to explore different architectures.
Parameter budget breakdown (with default values):
- Embeddings (vocab): 1200 x 128 = 153,600
- Position Embeddings: 256 x 128 = 32,768
- Transformer Layers: 6 x ~120,000 = ~720,000
- LM Head (with weight tying): 0 (shared with embeddings)
- Total: ~906,000 parameters
Attributes:
vocab_size: Size of the vocabulary (number of unique moves).
n_embd: Embedding dimension (d_model).
n_layer: Number of transformer layers.
n_head: Number of attention heads.
n_ctx: Maximum sequence length (context window).
n_inner: Feed-forward inner dimension (default: 3 * n_embd).
dropout: Dropout probability.
layer_norm_epsilon: Epsilon for layer normalization.
tie_weights: Whether to tie embedding and output weights.
"""
model_type = "chess_transformer"
def __init__(
self,
vocab_size: int = 144,
n_embd: int = 128,
n_layer: int = 6,
n_head: int = 4,
n_ctx: int = 256,
n_inner: Optional[int] = None,
dropout: float = 0.1,
layer_norm_epsilon: float = 1e-5,
tie_weights: bool = True,
pad_token_id: int = 0,
bos_token_id: int = 1,
eos_token_id: int = 2,
**kwargs,
):
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
**kwargs,
)
self.vocab_size = vocab_size
self.n_embd = n_embd
self.n_layer = n_layer
self.n_head = n_head
self.n_ctx = n_ctx
self.n_inner = n_inner if n_inner is not None else 3 * n_embd # Reduced from 4x to 3x
self.dropout = dropout
self.layer_norm_epsilon = layer_norm_epsilon
self.tie_weights = tie_weights
# Inform HF base class about tying behavior
self.tie_word_embeddings = bool(tie_weights)
class MultiHeadAttention(nn.Module):
"""
Multi-head self-attention module.
This is a standard scaled dot-product attention implementation
with causal masking for autoregressive generation.
"""
def __init__(self, config: ChessConfig):
super().__init__()
assert config.n_embd % config.n_head == 0, \
f"n_embd ({config.n_embd}) must be divisible by n_head ({config.n_head})"
self.n_head = config.n_head
self.n_embd = config.n_embd
self.head_dim = config.n_embd // config.n_head
# Combined QKV projection for efficiency
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
self.dropout = nn.Dropout(config.dropout)
# Causal mask (will be created on first forward pass)
self.register_buffer(
"bias",
torch.tril(torch.ones(config.n_ctx, config.n_ctx)).view(
1, 1, config.n_ctx, config.n_ctx
),
persistent=False,
)
def forward(
self,
x: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
batch_size, seq_len, _ = x.size()
# Compute Q, K, V
qkv = self.c_attn(x)
q, k, v = qkv.split(self.n_embd, dim=2)
# Reshape for multi-head attention
q = q.view(batch_size, seq_len, self.n_head, self.head_dim).transpose(1, 2)
k = k.view(batch_size, seq_len, self.n_head, self.head_dim).transpose(1, 2)
v = v.view(batch_size, seq_len, self.n_head, self.head_dim).transpose(1, 2)
# Scaled dot-product attention
attn_weights = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim)
# Apply causal mask
causal_mask = self.bias[:, :, :seq_len, :seq_len]
attn_weights = attn_weights.masked_fill(causal_mask == 0, float("-inf"))
# Apply attention mask (for padding)
if attention_mask is not None:
# attention_mask shape: (batch_size, seq_len) -> (batch_size, 1, 1, seq_len)
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
attn_weights = attn_weights.masked_fill(attention_mask == 0, float("-inf"))
attn_weights = F.softmax(attn_weights, dim=-1)
attn_weights = self.dropout(attn_weights)
# Apply attention to values
attn_output = torch.matmul(attn_weights, v)
# Reshape back
attn_output = attn_output.transpose(1, 2).contiguous().view(
batch_size, seq_len, self.n_embd
)
# Output projection
attn_output = self.c_proj(attn_output)
return attn_output
class FeedForward(nn.Module):
"""
Feed-forward network (MLP) module.
Standard two-layer MLP with GELU activation.
"""
def __init__(self, config: ChessConfig):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, config.n_inner)
self.c_proj = nn.Linear(config.n_inner, config.n_embd)
self.dropout = nn.Dropout(config.dropout)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.c_fc(x)
x = F.gelu(x)
x = self.c_proj(x)
x = self.dropout(x)
return x
class TransformerBlock(nn.Module):
"""
A single transformer block with attention and feed-forward layers.
Uses pre-normalization (LayerNorm before attention/FFN) for better
training stability.
"""
def __init__(self, config: ChessConfig):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
self.attn = MultiHeadAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
self.mlp = FeedForward(config)
def forward(
self,
x: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
# Pre-norm attention
x = x + self.attn(self.ln_1(x), attention_mask=attention_mask)
# Pre-norm FFN
x = x + self.mlp(self.ln_2(x))
return x
class ChessForCausalLM(PreTrainedModel):
"""
Chess Transformer for Causal Language Modeling (next-move prediction).
This model is designed to predict the next chess move given a sequence
of previous moves. It uses a GPT-style architecture with:
- Token embeddings for chess moves
- Learned positional embeddings
- Stacked transformer blocks
- Linear head for next-token prediction
The model supports weight tying between the embedding layer and the
output projection to save parameters.
Example:
>>> config = ChessConfig(vocab_size=1200, n_embd=128, n_layer=6)
>>> model = ChessForCausalLM(config)
>>> inputs = {"input_ids": torch.tensor([[1, 42, 87]])}
>>> outputs = model(**inputs)
>>> next_move_logits = outputs.logits[:, -1, :]
"""
config_class = ChessConfig
base_model_prefix = "transformer"
supports_gradient_checkpointing = True
# Suppress missing-key warning for tied lm_head when loading
keys_to_ignore_on_load_missing = ["lm_head.weight"]
def __init__(self, config: ChessConfig):
super().__init__(config)
# Token and position embeddings
self.wte = nn.Embedding(config.vocab_size, config.n_embd)
self.wpe = nn.Embedding(config.n_ctx, config.n_embd)
self.drop = nn.Dropout(config.dropout)
# Transformer blocks
self.h = nn.ModuleList([
TransformerBlock(config) for _ in range(config.n_layer)
])
# Final layer norm
self.ln_f = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
# Output head
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
# Declare tied weights for proper serialization
if config.tie_weights:
self._tied_weights_keys = ["lm_head.weight"]
# Initialize weights
self.post_init()
# Tie weights if configured
if config.tie_weights:
self.tie_weights()
def get_input_embeddings(self) -> nn.Module:
return self.wte
def set_input_embeddings(self, new_embeddings: nn.Module):
self.wte = new_embeddings
if getattr(self.config, "tie_weights", False):
self.tie_weights()
def get_output_embeddings(self) -> nn.Module:
return self.lm_head
def set_output_embeddings(self, new_embeddings: nn.Module):
self.lm_head = new_embeddings
def tie_weights(self):
# Use HF helper to tie or clone depending on config
if getattr(self.config, "tie_weights", False) or getattr(self.config, "tie_word_embeddings", False):
self._tie_or_clone_weights(self.lm_head, self.wte)
def _init_weights(self, module: nn.Module):
"""Initialize weights following GPT-2 style."""
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
elif isinstance(module, nn.LayerNorm):
torch.nn.init.ones_(module.weight)
torch.nn.init.zeros_(module.bias)
def forward(
self,
input_ids: torch.LongTensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
labels: Optional[torch.LongTensor] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple, CausalLMOutputWithPast]:
"""
Forward pass of the model.
Args:
input_ids: Token IDs of shape (batch_size, seq_len).
attention_mask: Attention mask of shape (batch_size, seq_len).
position_ids: Position IDs of shape (batch_size, seq_len).
labels: Labels for language modeling loss.
return_dict: Whether to return a ModelOutput object.
Returns:
CausalLMOutputWithPast containing loss (if labels provided) and logits.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, seq_len = input_ids.size()
device = input_ids.device
# Create position IDs if not provided
if position_ids is None:
position_ids = torch.arange(seq_len, device=device).unsqueeze(0).expand(batch_size, -1)
# Get embeddings
token_embeds = self.wte(input_ids)
position_embeds = self.wpe(position_ids)
hidden_states = self.drop(token_embeds + position_embeds)
# Pass through transformer blocks
for block in self.h:
hidden_states = block(hidden_states, attention_mask=attention_mask)
# Final layer norm
hidden_states = self.ln_f(hidden_states)
# Get logits
logits = self.lm_head(hidden_states)
# Compute loss if labels are provided
loss = None
if labels is not None:
# Shift logits and labels for next-token prediction
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten for cross-entropy
loss_fct = nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id)
loss = loss_fct(
shift_logits.view(-1, shift_logits.size(-1)),
shift_labels.view(-1),
)
if not return_dict:
output = (logits,)
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=None,
hidden_states=None,
attentions=None,
)
@torch.no_grad()
def generate_move(self, input_ids, temperature=1.0, top_k=None, top_p=None):
self.eval()
next_tokens = []
for _ in range(3): # 生成 color+piece, from, to
outputs = self(input_ids)
logits = outputs.logits[:, -1, :] / temperature
# top-k / top-p 筛选
probs = F.softmax(logits, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
next_tokens.append(next_token)
input_ids = torch.cat([input_ids, next_token], dim=-1)
return next_tokens # 返回三个 token id
# Register the model with Auto classes for easy loading
from transformers import AutoConfig, AutoModelForCausalLM
AutoConfig.register("chess_transformer", ChessConfig)
AutoModelForCausalLM.register(ChessConfig, ChessForCausalLM)