|
import argparse |
|
import h5py |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import os |
|
from scipy.interpolate import interp1d |
|
import time |
|
|
|
from solver import * |
|
|
|
|
|
|
|
def compute_nrmse(u_computed, u_reference): |
|
"""Computes the Normalized Root Mean Squared Error (nRMSE) between the computed solution and reference. |
|
|
|
Args: |
|
u_computed (np.ndarray): Computed solution [batch_size, len(t_coordinate), N]. |
|
u_reference (np.ndarray): Reference solution [batch_size, len(t_coordinate), N]. |
|
|
|
Returns: |
|
nrmse (np.float32): The normalized RMSE value. |
|
""" |
|
rmse_values = np.sqrt(np.mean((u_computed - u_reference)**2, axis=(1,2))) |
|
u_true_norm = np.sqrt(np.mean(u_reference**2, axis=(1,2))) |
|
nrmse = np.mean(rmse_values / u_true_norm) |
|
return nrmse |
|
|
|
|
|
|
|
def init(xc, |
|
modes: list =["sin", "sinsin", "Gaussian", "react", "possin"], |
|
u0=1.0, |
|
du=0.1): |
|
"""Initializes one or more 1D scalar functions based on specified modes. |
|
|
|
Args: |
|
xc (np.ndarray): Cell center coordinates. |
|
modes (list): List of initial condition types to generate. Options include |
|
"sin", "sinsin", "Gaussian", "react", and "possin". |
|
u0 (float): Base amplitude scaling factor. |
|
du (float): Secondary amplitude scaling factor for "sinsin" mode. |
|
|
|
Returns: |
|
np.ndarray: Stacked initial conditions with shape [len(modes), len(xc)]. |
|
""" |
|
initial_conditions = [] |
|
for mode in modes: |
|
assert mode in ["sin", "sinsin", "Gaussian", "react", "possin"], f"mode {mode} not supported!" |
|
|
|
if mode == "sin": |
|
u = u0 * np.sin((xc + 1.0) * np.pi) |
|
elif mode == "sinsin": |
|
u = np.sin((xc + 1.0) * np.pi) + du * np.sin((xc + 1.0) * np.pi * 8.0) |
|
elif mode == "Gaussian": |
|
t0 = 1.0 |
|
u = np.exp(-(xc**2) * np.pi / (4.0 * t0)) / np.sqrt(2.0 * t0) |
|
elif mode == "react": |
|
logu = -0.5 * (xc - np.pi) ** 2 / (0.25 * np.pi) ** 2 |
|
u = np.exp(logu) |
|
elif mode == "possin": |
|
u = u0 * np.abs(np.sin((xc + 1.0) * np.pi)) |
|
|
|
initial_conditions.append(u) |
|
return np.stack(initial_conditions) |
|
|
|
def interpolate_solution(u_fine, x_fine, t_fine, x_coarse, t_coarse): |
|
""" |
|
Interpolates the fine solution onto the coarse grid in both space and time. |
|
""" |
|
|
|
space_interp_func = interp1d(x_fine, u_fine, axis=2, kind='linear', fill_value="extrapolate") |
|
|
|
u_fine_interp_space = space_interp_func(x_coarse) |
|
|
|
|
|
time_interp_func = interp1d(t_fine, u_fine_interp_space, axis=1, kind='linear', fill_value="extrapolate") |
|
|
|
u_fine_interp = time_interp_func(t_coarse) |
|
|
|
return u_fine_interp |
|
|
|
def compute_error(coarse_tuple, fine_tuple): |
|
""" |
|
Computes the error between coarse and fine grid solutions by interpolating in both space and time. |
|
""" |
|
u_coarse, x_coarse, t_coarse = coarse_tuple |
|
u_fine, x_fine, t_fine = fine_tuple |
|
u_fine_interp = interpolate_solution(u_fine, x_fine, t_fine, x_coarse, t_coarse) |
|
|
|
|
|
error = np.mean(np.linalg.norm(u_coarse - u_fine_interp, axis=(1,2))) / np.sqrt(u_coarse.size) |
|
return error |
|
|
|
def get_x_coordinate(x_min, x_max, nx): |
|
dx = (x_max - x_min) / nx |
|
xe = np.linspace(x_min, x_max, nx+1) |
|
|
|
xc = xe[:-1] + 0.5 * dx |
|
return xc |
|
|
|
def get_t_coordinate(t_min, t_max, nt): |
|
|
|
it_tot = np.ceil((t_max - t_min) / nt) + 1 |
|
tc = np.arange(it_tot + 1) * nt |
|
return tc |
|
|
|
def convergence_test(nu, rho, |
|
nxs=[256, 512, 1024, 2048], |
|
dts=[0.01, 0.01, 0.01, 0.01], |
|
t_min=0, t_max=2, |
|
x_min=-1, x_max=1): |
|
print(f"##### Running convergence test for the solver #####") |
|
us = [] |
|
xcs = [] |
|
tcs = [] |
|
for nx, dt in zip(nxs, dts): |
|
print(f"**** Spatio resolution {nx} ****") |
|
tc = get_t_coordinate(t_min, t_max, dt) |
|
xc = get_x_coordinate(x_min, x_max, nx) |
|
u0 = init(xc) |
|
u = solver(u0, tc, nu, rho) |
|
us.append(np.squeeze(np.array(u))) |
|
xcs.append(np.array(xc)) |
|
tcs.append(np.array(tc)) |
|
print(f"**** Finished ****") |
|
|
|
|
|
errors = [] |
|
for i in range(len(nxs) - 1): |
|
coarse_tuple = (us[i], xcs[i], tcs[i]) |
|
fine_tuple = (us[-1], xcs[-1], tcs[-1]) |
|
error = compute_error( |
|
coarse_tuple, fine_tuple |
|
) |
|
errors.append(error) |
|
|
|
for i in range(len(nxs) - 2): |
|
rate = np.log(errors[i] / errors[i+1]) / np.log(nxs[i+1] / nxs[i]) |
|
print(f"Error measured at spatio resolution {nxs[i]} is {errors[i]:.3e}") |
|
print(f"Rate of convergence measured at spatio resolution {nxs[i]} is {rate:.3f}") |
|
|
|
avg_rate = np.mean( |
|
[np.log(errors[i] / errors[i+1]) / np.log(nxs[i+1] / nxs[i]) for i in range(len(nxs) - 2)] |
|
) |
|
return avg_rate |
|
|
|
def save_visualization(u_batch_np: np.array, u_ref_np: np.array, save_file_idx=0): |
|
""" |
|
Save the visualization of u_batch and u_ref in 2D (space vs time). |
|
""" |
|
difference_np = u_batch_np - u_ref_np |
|
fig, axs = plt.subplots(3, 1, figsize=(7, 12)) |
|
|
|
im1 = axs[0].imshow(u_batch_np, aspect='auto', extent=[0, 1, 1, 0], cmap='viridis') |
|
cbar1 = fig.colorbar(im1, ax=axs[0]) |
|
cbar1.set_label("Predicted values", fontsize=14) |
|
axs[0].set_xlabel("Spatial Dimension (x)", fontsize=14) |
|
axs[0].set_ylabel("Temporal Dimension (t)", fontsize=14) |
|
axs[0].set_title("Computed Solution over Space and Time", fontsize=16) |
|
|
|
im2 = axs[1].imshow(u_ref_np, aspect='auto', extent=[0, 1, 1, 0], cmap='viridis') |
|
cbar2 = fig.colorbar(im2, ax=axs[1]) |
|
cbar2.set_label("Reference values", fontsize=14) |
|
axs[1].set_xlabel("Spatial Dimension (x)", fontsize=14) |
|
axs[1].set_ylabel("Temporal Dimension (t)", fontsize=14) |
|
axs[1].set_title("Reference Solution over Space and Time", fontsize=16) |
|
|
|
im3 = axs[2].imshow(difference_np, aspect='auto', extent=[0, 1, 1, 0], cmap='coolwarm') |
|
cbar3 = fig.colorbar(im3, ax=axs[2]) |
|
cbar3.set_label("Prediction error", fontsize=14) |
|
axs[2].set_xlabel("Spatial Dimension (x)", fontsize=14) |
|
axs[2].set_ylabel("Temporal Dimension (t)", fontsize=14) |
|
axs[2].set_title("Prediction error over Space and Time", fontsize=16) |
|
|
|
plt.subplots_adjust(hspace=0.4) |
|
plt.savefig(os.path.join(args.save_pth, f'visualization_{save_file_idx}.png')) |
|
|
|
def time_min_max(t_coordinate): |
|
return t_coordinate[0], t_coordinate[-1] |
|
|
|
def x_coord_min_max(x_coordinate): |
|
return x_coordinate[0], x_coordinate[-1] |
|
|
|
def load_data(path, is_h5py=True): |
|
if is_h5py: |
|
|
|
with h5py.File(path, 'r') as f: |
|
|
|
t_coordinate = np.array(f['t-coordinate']) |
|
u = np.array(f['tensor']) |
|
x_coordinate = np.array(f['x-coordinate']) |
|
else: |
|
raise NotImplementedError("Only h5py format is supported for now.") |
|
|
|
t_min, t_max = time_min_max(t_coordinate) |
|
x_min, x_max = time_min_max(x_coordinate) |
|
return dict( |
|
tensor=u, |
|
t_coordinate=t_coordinate, |
|
x_coordinate=x_coordinate, |
|
t_min=t_min, |
|
t_max=t_max, |
|
x_min=x_min, |
|
x_max=x_max |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description="Script for solving 1D Reaction-Diffusion Equation.") |
|
|
|
parser.add_argument("--save-pth", type=str, |
|
default='.', |
|
help="The folder to save experimental results.") |
|
|
|
parser.add_argument("--run-id", type=str, |
|
default=0, |
|
help="The id of the current run.") |
|
|
|
parser.add_argument("--nu", type=float, |
|
default=0.5, |
|
choices=[0.5, 1.0, 2.0, 5.0], |
|
help="The diffusion coefficient.") |
|
|
|
parser.add_argument("--rho", type=float, |
|
default=1.0, |
|
choices=[1.0, 2.0, 5.0, 10.0], |
|
help="The reaction coefficient.") |
|
parser.add_argument("--dataset-path-for-eval", type=str, |
|
default='/usr1/username/data/CodePDE/ReactionDiffusion/ReacDiff_Nu0.5_Rho1.0.hdf5', |
|
help="The path to load the dataset.") |
|
|
|
args = parser.parse_args() |
|
|
|
data_dict = load_data(args.dataset_path_for_eval, is_h5py=True) |
|
u = data_dict['tensor'] |
|
t_coordinate = data_dict['t_coordinate'] |
|
x_coordinate = data_dict['x_coordinate'] |
|
|
|
print(f"Loaded data with shape: {u.shape}") |
|
|
|
|
|
|
|
u0 = u[:, 0] |
|
u_ref = u[:, :] |
|
|
|
|
|
batch_size, N = u0.shape |
|
nu, rho = args.nu, args.rho |
|
|
|
|
|
print(f"##### Running the solver on the given dataset #####") |
|
start_time = time.time() |
|
u_batch = solver(u0, t_coordinate, nu, rho) |
|
end_time = time.time() |
|
print(f"##### Finished #####") |
|
|
|
|
|
nrmse = compute_nrmse(u_batch, u_ref) |
|
avg_rate = convergence_test( |
|
nu, |
|
rho, |
|
t_min=data_dict['t_min'], |
|
t_max=data_dict['t_max']/10, |
|
x_min=data_dict['x_min'], |
|
x_max=data_dict['x_max'] |
|
) |
|
print(f"Result summary") |
|
print( |
|
f"nRMSE: {nrmse:.3e}\t| " |
|
f"Time: {end_time - start_time:.2f}s\t| " |
|
f"Average convergence rate: {avg_rate:.3f}\t|" |
|
) |
|
|
|
|
|
save_visualization(u_batch[2], u_ref[2], args.run_id) |
|
|