import argparse import h5py import matplotlib.pyplot as plt import numpy as np import os from scipy.interpolate import interp1d import time from solver import * ### For nRMSE evaluation def compute_nrmse(u_computed, u_reference): """Computes the Normalized Root Mean Squared Error (nRMSE) between the computed solution and reference. Args: u_computed (np.ndarray): Computed solution [batch_size, len(t_coordinate), N]. u_reference (np.ndarray): Reference solution [batch_size, len(t_coordinate), N]. Returns: nrmse (np.float32): The normalized RMSE value. """ rmse_values = np.sqrt(np.mean((u_computed - u_reference)**2, axis=(1,2))) u_true_norm = np.sqrt(np.mean(u_reference**2, axis=(1,2))) nrmse = np.mean(rmse_values / u_true_norm) return nrmse ### For convergence test def init(xc, modes: list =["sin", "sinsin", "Gaussian", "react", "possin"], u0=1.0, du=0.1): """Initializes one or more 1D scalar functions based on specified modes. Args: xc (np.ndarray): Cell center coordinates. modes (list): List of initial condition types to generate. Options include "sin", "sinsin", "Gaussian", "react", and "possin". u0 (float): Base amplitude scaling factor. du (float): Secondary amplitude scaling factor for "sinsin" mode. Returns: np.ndarray: Stacked initial conditions with shape [len(modes), len(xc)]. """ initial_conditions = [] for mode in modes: assert mode in ["sin", "sinsin", "Gaussian", "react", "possin"], f"mode {mode} not supported!" if mode == "sin": # sinusoidal wave u = u0 * np.sin((xc + 1.0) * np.pi) elif mode == "sinsin": # sinusoidal wave u = np.sin((xc + 1.0) * np.pi) + du * np.sin((xc + 1.0) * np.pi * 8.0) elif mode == "Gaussian": # for diffusion check t0 = 1.0 u = np.exp(-(xc**2) * np.pi / (4.0 * t0)) / np.sqrt(2.0 * t0) elif mode == "react": # for reaction-diffusion eq. logu = -0.5 * (xc - np.pi) ** 2 / (0.25 * np.pi) ** 2 u = np.exp(logu) elif mode == "possin": # sinusoidal wave u = u0 * np.abs(np.sin((xc + 1.0) * np.pi)) initial_conditions.append(u) return np.stack(initial_conditions) def interpolate_solution(u_fine, x_fine, t_fine, x_coarse, t_coarse): """ Interpolates the fine solution onto the coarse grid in both space and time. """ # Interpolate in space space_interp_func = interp1d(x_fine, u_fine, axis=2, kind='linear', fill_value="extrapolate") # finding the values of the u_fine function over the grid points of x u_fine_interp_space = space_interp_func(x_coarse) # Interpolate in time time_interp_func = interp1d(t_fine, u_fine_interp_space, axis=1, kind='linear', fill_value="extrapolate") # finding the values of the u_fine_interp_sapce function over the grid points of time. u_fine_interp = time_interp_func(t_coarse) return u_fine_interp def compute_error(coarse_tuple, fine_tuple): """ Computes the error between coarse and fine grid solutions by interpolating in both space and time. """ u_coarse, x_coarse, t_coarse = coarse_tuple u_fine, x_fine, t_fine = fine_tuple u_fine_interp = interpolate_solution(u_fine, x_fine, t_fine, x_coarse, t_coarse) # Compute L2 norm error error = np.mean(np.linalg.norm(u_coarse - u_fine_interp, axis=(1,2))) / np.sqrt(u_coarse.size) return error def get_x_coordinate(x_min, x_max, nx): dx = (x_max - x_min) / nx xe = np.linspace(x_min, x_max, nx+1) xc = xe[:-1] + 0.5 * dx return xc def get_t_coordinate(t_min, t_max, nt): # t-coordinate it_tot = np.ceil((t_max - t_min) / nt) + 1 tc = np.arange(it_tot + 1) * nt return tc def convergence_test(nu, rho, nxs=[256, 512, 1024, 2048], dts=[0.01, 0.01, 0.01, 0.01], t_min=0, t_max=2, x_min=-1, x_max=1): print(f"##### Running convergence test for the solver #####") us = [] xcs = [] tcs = [] for nx, dt in zip(nxs, dts): print(f"**** Spatio resolution {nx} ****") tc = get_t_coordinate(t_min, t_max, dt) xc = get_x_coordinate(x_min, x_max, nx) u0 = init(xc) u = solver(u0, tc, nu, rho) us.append(np.squeeze(np.array(u))) xcs.append(np.array(xc)) tcs.append(np.array(tc)) print(f"**** Finished ****") # now we try to compute error. errors = [] for i in range(len(nxs) - 1): coarse_tuple = (us[i], xcs[i], tcs[i]) fine_tuple = (us[-1], xcs[-1], tcs[-1]) error = compute_error( coarse_tuple, fine_tuple ) errors.append(error) for i in range(len(nxs) - 2): rate = np.log(errors[i] / errors[i+1]) / np.log(nxs[i+1] / nxs[i]) print(f"Error measured at spatio resolution {nxs[i]} is {errors[i]:.3e}") print(f"Rate of convergence measured at spatio resolution {nxs[i]} is {rate:.3f}") avg_rate = np.mean( [np.log(errors[i] / errors[i+1]) / np.log(nxs[i+1] / nxs[i]) for i in range(len(nxs) - 2)] ) return avg_rate def save_visualization(u_batch_np: np.array, u_ref_np: np.array, save_file_idx=0): """ Save the visualization of u_batch and u_ref in 2D (space vs time). """ difference_np = u_batch_np - u_ref_np fig, axs = plt.subplots(3, 1, figsize=(7, 12)) im1 = axs[0].imshow(u_batch_np, aspect='auto', extent=[0, 1, 1, 0], cmap='viridis') cbar1 = fig.colorbar(im1, ax=axs[0]) cbar1.set_label("Predicted values", fontsize=14) axs[0].set_xlabel("Spatial Dimension (x)", fontsize=14) axs[0].set_ylabel("Temporal Dimension (t)", fontsize=14) axs[0].set_title("Computed Solution over Space and Time", fontsize=16) im2 = axs[1].imshow(u_ref_np, aspect='auto', extent=[0, 1, 1, 0], cmap='viridis') cbar2 = fig.colorbar(im2, ax=axs[1]) cbar2.set_label("Reference values", fontsize=14) axs[1].set_xlabel("Spatial Dimension (x)", fontsize=14) axs[1].set_ylabel("Temporal Dimension (t)", fontsize=14) axs[1].set_title("Reference Solution over Space and Time", fontsize=16) im3 = axs[2].imshow(difference_np, aspect='auto', extent=[0, 1, 1, 0], cmap='coolwarm') cbar3 = fig.colorbar(im3, ax=axs[2]) cbar3.set_label("Prediction error", fontsize=14) axs[2].set_xlabel("Spatial Dimension (x)", fontsize=14) axs[2].set_ylabel("Temporal Dimension (t)", fontsize=14) axs[2].set_title("Prediction error over Space and Time", fontsize=16) plt.subplots_adjust(hspace=0.4) plt.savefig(os.path.join(args.save_pth, f'visualization_{save_file_idx}.png')) def time_min_max(t_coordinate): return t_coordinate[0], t_coordinate[-1] def x_coord_min_max(x_coordinate): return x_coordinate[0], x_coordinate[-1] def load_data(path, is_h5py=True): if is_h5py: #TODO: make sure this works out with h5py.File(path, 'r') as f: # Do NOT modify the data loading code t_coordinate = np.array(f['t-coordinate']) u = np.array(f['tensor']) x_coordinate = np.array(f['x-coordinate']) else: raise NotImplementedError("Only h5py format is supported for now.") t_min, t_max = time_min_max(t_coordinate) x_min, x_max = time_min_max(x_coordinate) return dict( tensor=u, t_coordinate=t_coordinate, x_coordinate=x_coordinate, t_min=t_min, t_max=t_max, x_min=x_min, x_max=x_max ) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Script for solving 1D Reaction-Diffusion Equation.") parser.add_argument("--save-pth", type=str, default='.', help="The folder to save experimental results.") parser.add_argument("--run-id", type=str, default=0, help="The id of the current run.") parser.add_argument("--nu", type=float, default=0.5, choices=[0.5, 1.0, 2.0, 5.0], help="The diffusion coefficient.") parser.add_argument("--rho", type=float, default=1.0, choices=[1.0, 2.0, 5.0, 10.0], help="The reaction coefficient.") parser.add_argument("--dataset-path-for-eval", type=str, default='/usr1/username/data/CodePDE/ReactionDiffusion/ReacDiff_Nu0.5_Rho1.0.hdf5', help="The path to load the dataset.") args = parser.parse_args() data_dict = load_data(args.dataset_path_for_eval, is_h5py=True) u = data_dict['tensor'] t_coordinate = data_dict['t_coordinate'] x_coordinate = data_dict['x_coordinate'] print(f"Loaded data with shape: {u.shape}") # t_coordinate contains T+1 time points, i.e., 0, t_1, ..., t_T. # Extract test set u0 = u[:, 0] u_ref = u[:, :] # Hyperparameters batch_size, N = u0.shape nu, rho = args.nu, args.rho # Run solver print(f"##### Running the solver on the given dataset #####") start_time = time.time() u_batch = solver(u0, t_coordinate, nu, rho) end_time = time.time() print(f"##### Finished #####") # Evaluation nrmse = compute_nrmse(u_batch, u_ref) avg_rate = convergence_test( nu, rho, t_min=data_dict['t_min'], t_max=data_dict['t_max']/10, # to save time x_min=data_dict['x_min'], x_max=data_dict['x_max'] ) print(f"Result summary") print( f"nRMSE: {nrmse:.3e}\t| " f"Time: {end_time - start_time:.2f}s\t| " f"Average convergence rate: {avg_rate:.3f}\t|" ) # Visualization for the first sample save_visualization(u_batch[2], u_ref[2], args.run_id)