Kyle1668's picture
End of training
441109d verified
metadata
library_name: transformers
base_model: allenai/scibert_scivocab_uncased
tags:
  - generated_from_trainer
model-index:
  - name: allenai-scibert_scivocab_uncased_20241126-033516
    results: []

allenai-scibert_scivocab_uncased_20241126-033516

This model is a fine-tuned version of allenai/scibert_scivocab_uncased on an unknown dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy@0.01 Accuracy@0.02 Accuracy@0.03 Accuracy@0.04 Accuracy@0.05 Accuracy@0.06 Accuracy@0.07 Accuracy@0.08 Accuracy@0.09 Accuracy@0.1 Accuracy@0.11 Accuracy@0.12 Accuracy@0.13 Accuracy@0.14 Accuracy@0.15 Accuracy@0.16 Accuracy@0.17 Accuracy@0.18 Accuracy@0.19 Accuracy@0.2 Accuracy@0.21 Accuracy@0.22 Accuracy@0.23 Accuracy@0.24 Accuracy@0.25 Accuracy@0.26 Accuracy@0.27 Accuracy@0.28 Accuracy@0.29 Accuracy@0.3 Accuracy@0.31 Accuracy@0.32 Accuracy@0.33 Accuracy@0.34 Accuracy@0.35 Accuracy@0.36 Accuracy@0.37 Accuracy@0.38 Accuracy@0.39 Accuracy@0.4 Accuracy@0.41 Accuracy@0.42 Accuracy@0.43 Accuracy@0.44 Accuracy@0.45 Accuracy@0.46 Accuracy@0.47 Accuracy@0.48 Accuracy@0.49 Accuracy@0.5 Accuracy@0.51 Accuracy@0.52 Accuracy@0.53 Accuracy@0.54 Accuracy@0.55 Accuracy@0.56 Accuracy@0.57 Accuracy@0.58 Accuracy@0.59 Accuracy@0.6 Accuracy@0.61 Accuracy@0.62 Accuracy@0.63 Accuracy@0.64 Accuracy@0.65 Accuracy@0.66 Accuracy@0.67 Accuracy@0.68 Accuracy@0.69 Accuracy@0.7 Accuracy@0.71 Accuracy@0.72 Accuracy@0.73 Accuracy@0.74 Accuracy@0.75 Accuracy@0.76 Accuracy@0.77 Accuracy@0.78 Accuracy@0.79 Accuracy@0.8 Accuracy@0.81 Accuracy@0.82 Accuracy@0.83 Accuracy@0.84 Accuracy@0.85 Accuracy@0.86 Accuracy@0.87 Accuracy@0.88 Accuracy@0.89 Accuracy@0.9 Accuracy@0.91 Accuracy@0.92 Accuracy@0.93 Accuracy@0.94 Accuracy@0.95 Accuracy@0.96 Accuracy@0.97 Accuracy@0.98 Accuracy@0.99
0.0105 1.0 1807 0.0168 0.9547 0.9681 0.9739 0.9772 0.9796 0.9814 0.9827 0.9839 0.9848 0.9856 0.9863 0.9870 0.9875 0.9880 0.9885 0.9889 0.9893 0.9897 0.9900 0.9903 0.9905 0.9908 0.9910 0.9913 0.9915 0.9917 0.9919 0.9921 0.9923 0.9925 0.9927 0.9929 0.9930 0.9932 0.9933 0.9935 0.9936 0.9937 0.9938 0.9940 0.9941 0.9942 0.9943 0.9944 0.9945 0.9946 0.9947 0.9948 0.9949 0.9950 0.9951 0.9952 0.9953 0.9954 0.9955 0.9955 0.9956 0.9957 0.9958 0.9958 0.9959 0.9960 0.9961 0.9962 0.9962 0.9963 0.9964 0.9964 0.9965 0.9966 0.9966 0.9967 0.9968 0.9969 0.9969 0.9970 0.9971 0.9971 0.9972 0.9973 0.9973 0.9974 0.9975 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 0.9982 0.9983 0.9984 0.9985 0.9987 0.9989 0.9992
0.0059 2.0 3614 0.0127 0.9793 0.9845 0.9869 0.9883 0.9893 0.9901 0.9907 0.9912 0.9916 0.9919 0.9922 0.9925 0.9928 0.9930 0.9932 0.9934 0.9935 0.9937 0.9938 0.9940 0.9941 0.9942 0.9943 0.9944 0.9945 0.9946 0.9947 0.9949 0.9949 0.9950 0.9951 0.9952 0.9953 0.9953 0.9954 0.9955 0.9955 0.9956 0.9957 0.9958 0.9958 0.9959 0.9959 0.9960 0.9960 0.9961 0.9961 0.9962 0.9962 0.9963 0.9964 0.9964 0.9965 0.9965 0.9966 0.9966 0.9967 0.9967 0.9968 0.9968 0.9968 0.9969 0.9969 0.9970 0.9970 0.9971 0.9971 0.9972 0.9972 0.9972 0.9973 0.9973 0.9974 0.9974 0.9975 0.9975 0.9975 0.9976 0.9976 0.9977 0.9977 0.9978 0.9978 0.9979 0.9979 0.9980 0.9980 0.9981 0.9981 0.9982 0.9982 0.9983 0.9984 0.9985 0.9985 0.9986 0.9987 0.9989 0.9991
0.0042 3.0 5421 0.0103 0.9841 0.9880 0.9898 0.9909 0.9916 0.9922 0.9926 0.9930 0.9933 0.9936 0.9938 0.9940 0.9942 0.9944 0.9945 0.9947 0.9948 0.9949 0.9951 0.9952 0.9953 0.9954 0.9955 0.9956 0.9956 0.9957 0.9958 0.9959 0.9959 0.9960 0.9961 0.9961 0.9962 0.9962 0.9963 0.9964 0.9964 0.9965 0.9965 0.9966 0.9966 0.9967 0.9967 0.9968 0.9968 0.9968 0.9969 0.9969 0.9970 0.9970 0.9970 0.9971 0.9971 0.9972 0.9972 0.9972 0.9973 0.9973 0.9974 0.9974 0.9974 0.9975 0.9975 0.9976 0.9976 0.9976 0.9977 0.9977 0.9977 0.9978 0.9978 0.9978 0.9979 0.9979 0.9979 0.9980 0.9980 0.9980 0.9981 0.9981 0.9982 0.9982 0.9982 0.9983 0.9983 0.9984 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 0.9987 0.9988 0.9988 0.9989 0.9990 0.9991 0.9993

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3