metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: スマホやタブレットPC、Oculus GOやVIVE、Apple Watchなど新しいデバイス向けアプリの企画・開発を行うスタートアップ。
- text: ベンチャー企業へのハンズオン投資などを行うベンチャーキャピタル。
- text: GoogleカレンダーやZoomと連携してスケジュール調整を自動化する日程調整ツール「Jicoo」を開発、提供するスタートアップ
- text: 住まい探しに特化したウェブサイト「TOKYO APARTMENTS」を提供する企業。
- text: 医療機器、産業機器の研究開発・製造販売を行う企業。
pipeline_tag: text-classification
inference: false
model-index:
- name: SetFit
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.7272727272727273
name: Accuracy
SetFit
This is a SetFit model that can be used for Text Classification. A OneVsRestClassifier instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Classification head: a OneVsRestClassifier instance
- Maximum Sequence Length: 512 tokens
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.7273 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Ekohe/RevenueStreamJP")
# Run inference
preds = model("医療機器、産業機器の研究開発・製造販売を行う企業。")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 1.9824 | 57 |
Training Hyperparameters
- batch_size: (10, 10)
- num_epochs: (35, 35)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 3
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0029 | 1 | 0.2602 | - |
0.1462 | 50 | 0.25 | - |
0.2924 | 100 | 0.1712 | - |
0.4386 | 150 | 0.2671 | - |
0.5848 | 200 | 0.2288 | - |
0.7310 | 250 | 0.2253 | - |
0.8772 | 300 | 0.2675 | - |
1.0234 | 350 | 0.1204 | - |
1.1696 | 400 | 0.1185 | - |
1.3158 | 450 | 0.1884 | - |
1.4620 | 500 | 0.2311 | - |
1.6082 | 550 | 0.0659 | - |
1.7544 | 600 | 0.1719 | - |
1.9006 | 650 | 0.0094 | - |
2.0468 | 700 | 0.0237 | - |
2.1930 | 750 | 0.0007 | - |
2.3392 | 800 | 0.0021 | - |
2.4854 | 850 | 0.0013 | - |
2.6316 | 900 | 0.1887 | - |
2.7778 | 950 | 0.0004 | - |
2.9240 | 1000 | 0.0001 | - |
3.0702 | 1050 | 0.0003 | - |
3.2164 | 1100 | 0.0764 | - |
3.3626 | 1150 | 0.0025 | - |
3.5088 | 1200 | 0.0001 | - |
3.6550 | 1250 | 0.0001 | - |
3.8012 | 1300 | 0.0001 | - |
3.9474 | 1350 | 0.0001 | - |
4.0936 | 1400 | 0.0 | - |
4.2398 | 1450 | 0.0001 | - |
4.3860 | 1500 | 0.0001 | - |
4.5322 | 1550 | 0.0 | - |
4.6784 | 1600 | 0.0 | - |
4.8246 | 1650 | 0.0 | - |
4.9708 | 1700 | 0.0 | - |
5.1170 | 1750 | 0.0001 | - |
5.2632 | 1800 | 0.0 | - |
5.4094 | 1850 | 0.0 | - |
5.5556 | 1900 | 0.0 | - |
5.7018 | 1950 | 0.0883 | - |
5.8480 | 2000 | 0.0 | - |
5.9942 | 2050 | 0.0 | - |
6.1404 | 2100 | 0.0 | - |
6.2865 | 2150 | 0.0 | - |
6.4327 | 2200 | 0.0 | - |
6.5789 | 2250 | 0.0 | - |
6.7251 | 2300 | 0.0 | - |
6.8713 | 2350 | 0.0 | - |
7.0175 | 2400 | 0.0 | - |
7.1637 | 2450 | 0.0 | - |
7.3099 | 2500 | 0.0 | - |
7.4561 | 2550 | 0.0 | - |
7.6023 | 2600 | 0.0 | - |
7.7485 | 2650 | 0.0 | - |
7.8947 | 2700 | 0.0 | - |
8.0409 | 2750 | 0.0 | - |
8.1871 | 2800 | 0.0 | - |
8.3333 | 2850 | 0.0 | - |
8.4795 | 2900 | 0.0 | - |
8.6257 | 2950 | 0.0 | - |
8.7719 | 3000 | 0.0 | - |
8.9181 | 3050 | 0.0 | - |
9.0643 | 3100 | 0.0 | - |
9.2105 | 3150 | 0.0 | - |
9.3567 | 3200 | 0.0 | - |
9.5029 | 3250 | 0.0618 | - |
9.6491 | 3300 | 0.3522 | - |
9.7953 | 3350 | 0.0051 | - |
9.9415 | 3400 | 0.0002 | - |
10.0877 | 3450 | 0.0018 | - |
10.2339 | 3500 | 0.0027 | - |
10.3801 | 3550 | 0.0001 | - |
10.5263 | 3600 | 0.0 | - |
10.6725 | 3650 | 0.0 | - |
10.8187 | 3700 | 0.0001 | - |
10.9649 | 3750 | 0.0 | - |
11.1111 | 3800 | 0.0 | - |
11.2573 | 3850 | 0.0001 | - |
11.4035 | 3900 | 0.0001 | - |
11.5497 | 3950 | 0.0 | - |
11.6959 | 4000 | 0.0 | - |
11.8421 | 4050 | 0.0 | - |
11.9883 | 4100 | 0.0 | - |
12.1345 | 4150 | 0.0 | - |
12.2807 | 4200 | 0.0001 | - |
12.4269 | 4250 | 0.0 | - |
12.5731 | 4300 | 0.0 | - |
12.7193 | 4350 | 0.0003 | - |
12.8655 | 4400 | 0.0 | - |
13.0117 | 4450 | 0.0 | - |
13.1579 | 4500 | 0.0 | - |
13.3041 | 4550 | 0.0 | - |
13.4503 | 4600 | 0.0 | - |
13.5965 | 4650 | 0.0 | - |
13.7427 | 4700 | 0.0 | - |
13.8889 | 4750 | 0.0 | - |
14.0351 | 4800 | 0.0 | - |
14.1813 | 4850 | 0.0 | - |
14.3275 | 4900 | 0.0 | - |
14.4737 | 4950 | 0.0 | - |
14.6199 | 5000 | 0.0 | - |
14.7661 | 5050 | 0.0 | - |
14.9123 | 5100 | 0.0 | - |
15.0585 | 5150 | 0.0 | - |
15.2047 | 5200 | 0.0 | - |
15.3509 | 5250 | 0.0 | - |
15.4971 | 5300 | 0.0 | - |
15.6433 | 5350 | 0.0 | - |
15.7895 | 5400 | 0.0 | - |
15.9357 | 5450 | 0.0 | - |
16.0819 | 5500 | 0.0 | - |
16.2281 | 5550 | 0.0 | - |
16.3743 | 5600 | 0.0 | - |
16.5205 | 5650 | 0.0 | - |
16.6667 | 5700 | 0.0 | - |
16.8129 | 5750 | 0.0 | - |
16.9591 | 5800 | 0.0 | - |
17.1053 | 5850 | 0.0 | - |
17.2515 | 5900 | 0.0 | - |
17.3977 | 5950 | 0.0 | - |
17.5439 | 6000 | 0.0 | - |
17.6901 | 6050 | 0.0 | - |
17.8363 | 6100 | 0.0 | - |
17.9825 | 6150 | 0.0 | - |
18.1287 | 6200 | 0.0 | - |
18.2749 | 6250 | 0.0 | - |
18.4211 | 6300 | 0.0 | - |
18.5673 | 6350 | 0.0 | - |
18.7135 | 6400 | 0.0 | - |
18.8596 | 6450 | 0.0 | - |
19.0058 | 6500 | 0.0 | - |
19.1520 | 6550 | 0.0 | - |
19.2982 | 6600 | 0.0 | - |
19.4444 | 6650 | 0.0 | - |
19.5906 | 6700 | 0.0 | - |
19.7368 | 6750 | 0.0 | - |
19.8830 | 6800 | 0.0 | - |
20.0292 | 6850 | 0.0 | - |
20.1754 | 6900 | 0.0 | - |
20.3216 | 6950 | 0.0 | - |
20.4678 | 7000 | 0.0 | - |
20.6140 | 7050 | 0.0 | - |
20.7602 | 7100 | 0.0 | - |
20.9064 | 7150 | 0.0 | - |
21.0526 | 7200 | 0.0 | - |
21.1988 | 7250 | 0.0 | - |
21.3450 | 7300 | 0.0 | - |
21.4912 | 7350 | 0.0 | - |
21.6374 | 7400 | 0.0 | - |
21.7836 | 7450 | 0.0 | - |
21.9298 | 7500 | 0.0 | - |
22.0760 | 7550 | 0.0 | - |
22.2222 | 7600 | 0.0 | - |
22.3684 | 7650 | 0.0 | - |
22.5146 | 7700 | 0.0 | - |
22.6608 | 7750 | 0.0 | - |
22.8070 | 7800 | 0.0 | - |
22.9532 | 7850 | 0.0 | - |
23.0994 | 7900 | 0.0 | - |
23.2456 | 7950 | 0.0 | - |
23.3918 | 8000 | 0.0 | - |
23.5380 | 8050 | 0.0 | - |
23.6842 | 8100 | 0.0 | - |
23.8304 | 8150 | 0.0 | - |
23.9766 | 8200 | 0.0 | - |
24.1228 | 8250 | 0.0858 | - |
24.2690 | 8300 | 0.0 | - |
24.4152 | 8350 | 0.0001 | - |
24.5614 | 8400 | 0.0 | - |
24.7076 | 8450 | 0.0005 | - |
24.8538 | 8500 | 0.0992 | - |
25.0 | 8550 | 0.0 | - |
25.1462 | 8600 | 0.0 | - |
25.2924 | 8650 | 0.0 | - |
25.4386 | 8700 | 0.0 | - |
25.5848 | 8750 | 0.0 | - |
25.7310 | 8800 | 0.0 | - |
25.8772 | 8850 | 0.0 | - |
26.0234 | 8900 | 0.0 | - |
26.1696 | 8950 | 0.0 | - |
26.3158 | 9000 | 0.0 | - |
26.4620 | 9050 | 0.0 | - |
26.6082 | 9100 | 0.0 | - |
26.7544 | 9150 | 0.0 | - |
26.9006 | 9200 | 0.0 | - |
27.0468 | 9250 | 0.0 | - |
27.1930 | 9300 | 0.0 | - |
27.3392 | 9350 | 0.0 | - |
27.4854 | 9400 | 0.0 | - |
27.6316 | 9450 | 0.0 | - |
27.7778 | 9500 | 0.0 | - |
27.9240 | 9550 | 0.0 | - |
28.0702 | 9600 | 0.0 | - |
28.2164 | 9650 | 0.0 | - |
28.3626 | 9700 | 0.0 | - |
28.5088 | 9750 | 0.0 | - |
28.6550 | 9800 | 0.0 | - |
28.8012 | 9850 | 0.0 | - |
28.9474 | 9900 | 0.0 | - |
29.0936 | 9950 | 0.0 | - |
29.2398 | 10000 | 0.0 | - |
29.3860 | 10050 | 0.0 | - |
29.5322 | 10100 | 0.0 | - |
29.6784 | 10150 | 0.0 | - |
29.8246 | 10200 | 0.0 | - |
29.9708 | 10250 | 0.0 | - |
30.1170 | 10300 | 0.0 | - |
30.2632 | 10350 | 0.0 | - |
30.4094 | 10400 | 0.0 | - |
30.5556 | 10450 | 0.0 | - |
30.7018 | 10500 | 0.0 | - |
30.8480 | 10550 | 0.0 | - |
30.9942 | 10600 | 0.0 | - |
31.1404 | 10650 | 0.0 | - |
31.2865 | 10700 | 0.0 | - |
31.4327 | 10750 | 0.0 | - |
31.5789 | 10800 | 0.0 | - |
31.7251 | 10850 | 0.0 | - |
31.8713 | 10900 | 0.0 | - |
32.0175 | 10950 | 0.0 | - |
32.1637 | 11000 | 0.0 | - |
32.3099 | 11050 | 0.0 | - |
32.4561 | 11100 | 0.0 | - |
32.6023 | 11150 | 0.0 | - |
32.7485 | 11200 | 0.0 | - |
32.8947 | 11250 | 0.0 | - |
33.0409 | 11300 | 0.0 | - |
33.1871 | 11350 | 0.0 | - |
33.3333 | 11400 | 0.0 | - |
33.4795 | 11450 | 0.0 | - |
33.6257 | 11500 | 0.0 | - |
33.7719 | 11550 | 0.0 | - |
33.9181 | 11600 | 0.0 | - |
34.0643 | 11650 | 0.0 | - |
34.2105 | 11700 | 0.0 | - |
34.3567 | 11750 | 0.0 | - |
34.5029 | 11800 | 0.0 | - |
34.6491 | 11850 | 0.0 | - |
34.7953 | 11900 | 0.0 | - |
34.9415 | 11950 | 0.0 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.1
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu118
- Datasets: 2.15.0
- Tokenizers: 0.15.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}