Kuongan's picture
Training completed!
ca3ed67 verified
metadata
library_name: transformers
license: mit
base_model: microsoft/deberta-v3-base
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: CS221-deberta-v3-base-finetuned-augmentation
    results: []

CS221-deberta-v3-base-finetuned-augmentation

This model is a fine-tuned version of microsoft/deberta-v3-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2182
  • F1: 0.9267
  • Roc Auc: 0.9438
  • Accuracy: 0.8568

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.4444 1.0 180 0.4238 0.5147 0.6834 0.3621
0.3212 2.0 360 0.3233 0.7223 0.7933 0.5024
0.2397 3.0 540 0.2473 0.8341 0.8798 0.6442
0.1506 4.0 720 0.2095 0.8683 0.9076 0.7262
0.0987 5.0 900 0.2038 0.8838 0.9122 0.7498
0.0659 6.0 1080 0.1869 0.9068 0.9311 0.8151
0.0432 7.0 1260 0.2043 0.9027 0.9253 0.8096
0.029 8.0 1440 0.1907 0.9135 0.9337 0.8270
0.02 9.0 1620 0.1930 0.9240 0.9423 0.8520
0.0128 10.0 1800 0.2234 0.9180 0.9402 0.8381
0.0115 11.0 1980 0.2132 0.9185 0.9395 0.8409
0.01 12.0 2160 0.2166 0.9249 0.9440 0.8520
0.0055 13.0 2340 0.2182 0.9267 0.9438 0.8568
0.0057 14.0 2520 0.2263 0.9245 0.9445 0.8562
0.0041 15.0 2700 0.2246 0.9254 0.9464 0.8555
0.0043 16.0 2880 0.2285 0.9258 0.9451 0.8548

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0