metadata
base_model:
- gemma-2-2b-it/2
- Kukedlc/NeuralGemma2-2b-Spanish
- Kukedlc/fusion_model_2
tags:
- merge
- mergekit
- lazymergekit
- gemma-2-2b-it/2
- Kukedlc/NeuralGemma2-2b-Spanish
- Kukedlc/fusion_model_2
NeuralGemma-2B-Spanish
NeuralGemma-2B-Spanish is a merge of the following models using LazyMergekit:
🧩 Configuration
models:
- model: gemma-2-2b/2
# No parameters necessary for base model
- model: gemma-2-2b-it/2
parameters:
density: 0.53
weight: 0.4
- model: Kukedlc/NeuralGemma2-2b-Spanish
parameters:
density: 0.44
weight: 0.2
- model: Kukedlc/fusion_model_2
parameters:
density: 0.66
weight: 0.4
merge_method: dare_ties
base_model: gemma-2-2b/2
parameters:
int8_mask: true
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Kukedlc/NeuralGemma-2B-Spanish"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])