Kudod's picture
Training complete
950204f verified
---
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner-3090-11June
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9397210229159748
- name: Recall
type: recall
value: 0.9523729384045776
- name: F1
type: f1
value: 0.9460046807087931
- name: Accuracy
type: accuracy
value: 0.9869017483958321
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner-3090-11June
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0745
- Precision: 0.9397
- Recall: 0.9524
- F1: 0.9460
- Accuracy: 0.9869
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0742 | 1.0 | 1756 | 0.0649 | 0.9099 | 0.9334 | 0.9215 | 0.9815 |
| 0.0371 | 2.0 | 3512 | 0.0678 | 0.9307 | 0.9448 | 0.9377 | 0.9851 |
| 0.0213 | 3.0 | 5268 | 0.0620 | 0.9325 | 0.9507 | 0.9415 | 0.9862 |
| 0.0142 | 4.0 | 7024 | 0.0707 | 0.9357 | 0.9504 | 0.9430 | 0.9863 |
| 0.0059 | 5.0 | 8780 | 0.0745 | 0.9397 | 0.9524 | 0.9460 | 0.9869 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.3.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1