metadata
license: apache-2.0
base_model: distilbert-base-cased
tags:
- generated_from_trainer
datasets:
- ner
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: Bert-NER
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: ner
type: ner
config: indian_names
split: test
args: indian_names
metrics:
- name: Precision
type: precision
value: 0.9779481031086752
- name: Recall
type: recall
value: 0.950199700449326
- name: F1
type: f1
value: 0.96387423507069
- name: Accuracy
type: accuracy
value: 0.977337411889879
Bert-NER
This model is a fine-tuned version of distilbert-base-cased on the ner dataset. It achieves the following results on the evaluation set:
- Loss: 0.0518
- Precision: 0.9779
- Recall: 0.9502
- F1: 0.9639
- Accuracy: 0.9773
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 438 | 0.0725 | 0.9691 | 0.9325 | 0.9505 | 0.9693 |
0.0435 | 2.0 | 876 | 0.0635 | 0.9687 | 0.9392 | 0.9537 | 0.9711 |
0.039 | 3.0 | 1314 | 0.0569 | 0.9790 | 0.9416 | 0.9599 | 0.9751 |
0.0392 | 4.0 | 1752 | 0.0542 | 0.9744 | 0.9490 | 0.9615 | 0.9758 |
0.0378 | 5.0 | 2190 | 0.0518 | 0.9779 | 0.9502 | 0.9639 | 0.9773 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.0