metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- ner
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: Bert-NER
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: ner
type: ner
config: indian_names
split: test
args: indian_names
metrics:
- name: Precision
type: precision
value: 0.7254647322919372
- name: Recall
type: recall
value: 0.8467001558981465
- name: F1
type: f1
value: 0.7814079891293488
- name: Accuracy
type: accuracy
value: 0.8557099199430039
Bert-NER
This model is a fine-tuned version of distilbert-base-uncased on the ner dataset. It achieves the following results on the evaluation set:
- Loss: 0.9081
- Precision: 0.7255
- Recall: 0.8467
- F1: 0.7814
- Accuracy: 0.8557
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0934 | 1.0 | 501 | 0.6938 | 0.7190 | 0.8536 | 0.7805 | 0.8502 |
0.035 | 2.0 | 1002 | 0.7709 | 0.7087 | 0.8383 | 0.7681 | 0.8446 |
0.0196 | 3.0 | 1503 | 0.7814 | 0.7130 | 0.8439 | 0.7729 | 0.8477 |
0.0109 | 4.0 | 2004 | 0.8572 | 0.7206 | 0.8467 | 0.7786 | 0.8526 |
0.0065 | 5.0 | 2505 | 0.9081 | 0.7255 | 0.8467 | 0.7814 | 0.8557 |
Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3