Bert-NER / README.md
Kriyans's picture
End of training
61456af
|
raw
history blame
2.14 kB
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - ner
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: my_awesome_wnut_model
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: ner
          type: ner
          config: indian_names
          split: train
          args: indian_names
        metrics:
          - name: Precision
            type: precision
            value: 0.9985643067910454
          - name: Recall
            type: recall
            value: 0.998333826213025
          - name: F1
            type: f1
            value: 0.9984490532010821
          - name: Accuracy
            type: accuracy
            value: 0.9986316806181584

my_awesome_wnut_model

This model is a fine-tuned version of distilbert-base-uncased on the ner dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0014
  • Precision: 0.9986
  • Recall: 0.9983
  • F1: 0.9984
  • Accuracy: 0.9986

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0316 1.0 7904 0.0056 0.9940 0.9931 0.9935 0.9945
0.0102 2.0 15808 0.0014 0.9986 0.9983 0.9984 0.9986

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3