Kquant03 commited on
Commit
5c743ef
·
verified ·
1 Parent(s): 0544ad9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -0
README.md CHANGED
@@ -1,3 +1,66 @@
1
  ---
 
 
 
 
 
2
  license: bigcode-openrail-m
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ tags:
3
+ - code
4
+ - starcoder2
5
+ library_name: transformers
6
+ pipeline_tag: text-generation
7
  license: bigcode-openrail-m
8
  ---
9
+
10
+ <p align="center">
11
+ <img width="300px" alt="starcoder2-instruct" src="https://huggingface.co/TechxGenus/starcoder2-15b-instruct/resolve/main/starcoder2-instruct.jpg">
12
+ </p>
13
+
14
+ ### starcoder2-instruct (not my model, I just quantized it)
15
+
16
+ We've fine-tuned starcoder2-15b with an additional 0.7 billion high-quality, code-related tokens for 3 epochs. We used DeepSpeed ZeRO 3 and Flash Attention 2 to accelerate the training process. It achieves **77.4 pass@1** on HumanEval-Python. This model operates using the Alpaca instruction format (excluding the system prompt).
17
+
18
+ ### Usage
19
+
20
+ Here give some examples of how to use our model:
21
+
22
+ ```python
23
+ from transformers import AutoTokenizer, AutoModelForCausalLM
24
+ import torch
25
+ PROMPT = """### Instruction
26
+ {instruction}
27
+ ### Response
28
+ """
29
+ instruction = <Your code instruction here>
30
+ prompt = PROMPT.format(instruction=instruction)
31
+ tokenizer = AutoTokenizer.from_pretrained("TechxGenus/starcoder2-15b-instruct")
32
+ model = AutoModelForCausalLM.from_pretrained(
33
+ "TechxGenus/starcoder2-15b-instruct",
34
+ torch_dtype=torch.bfloat16,
35
+ device_map="auto",
36
+ )
37
+ inputs = tokenizer.encode(prompt, return_tensors="pt")
38
+ outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=2048)
39
+ print(tokenizer.decode(outputs[0]))
40
+ ```
41
+
42
+ With text-generation pipeline:
43
+
44
+
45
+ ```python
46
+ from transformers import pipeline
47
+ import torch
48
+ PROMPT = """### Instruction
49
+ {instruction}
50
+ ### Response
51
+ """
52
+ instruction = <Your code instruction here>
53
+ prompt = PROMPT.format(instruction=instruction)
54
+ generator = pipeline(
55
+ model="TechxGenus/starcoder2-15b-instruct",
56
+ task="text-generation",
57
+ torch_dtype=torch.bfloat16,
58
+ device_map="auto",
59
+ )
60
+ result = generator(prompt, max_length=2048)
61
+ print(result[0]["generated_text"])
62
+ ```
63
+
64
+ ### Note
65
+
66
+ Model may sometimes make errors, produce misleading contents, or struggle to manage tasks that are not related to coding. It has undergone very limited testing. Additional safety testing should be performed before any real-world deployments.