|
I'll explain more about this model when I've found the optimal checkpoint for its use case |
|
|
|
it's been full fine-tuned on [Sandevistan](https://huggingface.co/datasets/Replete-AI/Sandevistan). |
|
|
|
|
|
Here is my Axolotl config (thanks to fizz and empti): |
|
|
|
``` |
|
base_model: meta-llama/Meta-Llama-3-8B |
|
|
|
load_in_8bit: false |
|
load_in_4bit: false |
|
strict: false |
|
|
|
load_in_8bit: false |
|
load_in_4bit: false |
|
strict: false |
|
|
|
datasets: |
|
- path: Kquant03/Sandevistan_Reformat |
|
type: customllama3_stan |
|
dataset_prepared_path: last_run_prepared |
|
val_set_size: 0.05 |
|
output_dir: ./outputs/out |
|
max_steps: 80000 |
|
|
|
fix_untrained_tokens: true |
|
|
|
sequence_len: 4096 |
|
sample_packing: true |
|
pad_to_sequence_len: true |
|
|
|
wandb_project: Pneuma |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_name: |
|
wandb_log_model: |
|
|
|
gradient_accumulation_steps: 16 |
|
micro_batch_size: 8 |
|
num_epochs: 1 |
|
optimizer: paged_adamw_8bit |
|
lr_scheduler: cosine |
|
learning_rate: 0.00001 |
|
max_grad_norm: 1 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: auto |
|
fp16: |
|
tf32: false |
|
|
|
gradient_checkpointing: unsloth |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
eval_sample_packing: false |
|
|
|
plugins: |
|
- axolotl.integrations.liger.LigerPlugin |
|
liger_rope: true |
|
liger_rms_norm: true |
|
liger_swiglu: true |
|
liger_fused_linear_cross_entropy: true |
|
|
|
hub_model_id: Replete-AI/L3-Pneuma-8B |
|
hub_strategy: every_save |
|
|
|
warmup_steps: 10 |
|
evals_per_epoch: 3 |
|
eval_table_size: |
|
saves_per_epoch: 3 |
|
debug: |
|
deepspeed: |
|
weight_decay: 0.1 |
|
fsdp: |
|
fsdp_config: |
|
special_tokens: |
|
bos_token: "<|begin_of_text|>" |
|
eos_token: "<|end_of_text|>" |
|
pad_token: "<|end_of_text|>" |
|
tokens: |
|
``` |