Konstantinos
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -9,6 +9,85 @@ widget:
|
|
9 |
tags:
|
10 |
- text-generation-inference
|
11 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
---
|
13 |
license: odc-by
|
14 |
-
|
|
|
9 |
tags:
|
10 |
- text-generation-inference
|
11 |
---
|
12 |
+
|
13 |
+
|
14 |
+
---
|
15 |
+
language: el
|
16 |
+
---
|
17 |
+
|
18 |
+
# el-llama-smol
|
19 |
+
|
20 |
+
|
21 |
+
## Model:
|
22 |
+
`el-llama-smol` aims to be the first in a series of LLMs trained mostly in Greek corpora. The model is a small (1bn parameters) version of LLama, with the following configuration.
|
23 |
+
|
24 |
+
```json
|
25 |
+
{
|
26 |
+
"architectures": ["LLaMAForCausalLM"],
|
27 |
+
"bos_token_id": 0,
|
28 |
+
"eos_token_id": 1,
|
29 |
+
"hidden_act": "silu",
|
30 |
+
"hidden_size": 2048,
|
31 |
+
"intermediate_size": 5461,
|
32 |
+
"initializer_range": 0.02,
|
33 |
+
"max_sequence_length": 1024,
|
34 |
+
"model_type": "llama",
|
35 |
+
"num_attention_heads": 32,
|
36 |
+
"num_hidden_layers": 24,
|
37 |
+
"pad_token_id": -1,
|
38 |
+
"rms_norm_eps": 1e-06,
|
39 |
+
"transformers_version": "4.28.1",
|
40 |
+
"use_cache": true,
|
41 |
+
"vocab_size": 22000
|
42 |
+
}
|
43 |
+
```
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
## Training details:
|
48 |
+
|
49 |
+
The current snapshot has been trained for 40hrs with a RTX A6000 GPU (48G), using the `galore_adamw8bit_per_layer` optimizer by Zhao et. al [1] and a context size of 1024 tokens.
|
50 |
+
|
51 |
+
|
52 |
+
## Dataset:
|
53 |
+
The model is trained on the Greek subset of the [allenai/c4](https://huggingface.co/datasets/allenai/c4) dataset. Text tokenization is performed with a (heavily unoptimized) tokenizer with vocab size of 22000 tokens, trained with [SentencePiece](https://github.com/google/sentencepiece)
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
## Examples
|
58 |
+
|
59 |
+
#### Use a 🤗 pipeline
|
60 |
+
```python
|
61 |
+
|
62 |
+
from transformers import pipeline
|
63 |
+
pipe = pipeline("text-generation", model="Konstantinos/el_llama_smol")
|
64 |
+
|
65 |
+
set_seed(1)
|
66 |
+
prompt = """Η Ιαπωνία έχει μια ιστορία που ξεκινά πριν από χιλιάδες χρόνια.
|
67 |
+
Οι επιστήμονες πιστεύουν πως οι Ιάπωνες ως ενιαίο σύνολο προέρχονται από πολλές ομάδες,
|
68 |
+
οι οποίες μετανάστευσαν στα νησιά από άλλα σημεία της Ασίας, στα οποία περιλαμβάνονται """
|
69 |
+
|
70 |
+
ret = pipe(prompt, do_sample=True, top_k=20, temperature=0.85, max_new_tokens=110)
|
71 |
+
```
|
72 |
+
|
73 |
+
#### Load model directly
|
74 |
+
```python
|
75 |
+
|
76 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
77 |
+
|
78 |
+
tokenizer = AutoTokenizer.from_pretrained("Konstantinos/el_llama_smol")
|
79 |
+
model = AutoModelForCausalLM.from_pretrained("Konstantinos/el_llama_smol")
|
80 |
+
```
|
81 |
+
|
82 |
+
## References
|
83 |
+
|
84 |
+
[1] Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, & Yuandong Tian. (2024). GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection.
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
## Citation
|
89 |
+
|
90 |
+
TBD
|
91 |
---
|
92 |
license: odc-by
|
93 |
-
|